Patents by Inventor Mark Anthony Emanuele

Mark Anthony Emanuele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200240263
    Abstract: Systems and methods for delivering detailed information about physical properties, including inflow data, in a downhole of a well to the surface without the need of providing cabling to the downhole are presented. Such information can be based on data captured by sensors placed within the downhole of the well, and subsequently stored into memory of ruggedized buoyant memory modules (RBMMs) that are physically injected into the fluid flow of the well. The RBMMs use the flow of the fluid inside of the well to deliver the data to a location where the data can be extracted. Data stored in the RBMMs can be extracted either directly from the RBMMs or remotely via, for example, a wireless interface.
    Type: Application
    Filed: October 12, 2018
    Publication date: July 30, 2020
    Inventors: Stewart SHERRIT, Jeffery L. HALL, Dyung Tien VO, Mark Anthony EMANUELE
  • Patent number: 9447674
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 20, 2016
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear
  • Patent number: 9447675
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 20, 2016
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear
  • Publication number: 20140158353
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Application
    Filed: May 16, 2013
    Publication date: June 12, 2014
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear
  • Publication number: 20140151040
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Application
    Filed: May 16, 2013
    Publication date: June 5, 2014
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear