Patents by Inventor Mark Aretskin

Mark Aretskin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9577342
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: February 21, 2017
    Assignee: SIERRA NEVADA CORPORATION
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Publication number: 20120056794
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 8, 2012
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Patent number: 8059051
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: November 15, 2011
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Patent number: 7995000
    Abstract: An electronically controlled monolithic array antenna includes a transmission line through which an electromagnetic signal may be propagated, and a metal antenna element defining an evanescent coupling edge located so as to permit evanescent coupling of the signal between the transmission line and the antenna element. The antenna element includes a conductive ground plate; an array of conductive edge elements defining the coupling edge, each of the edge elements being electrically connected to a control signal source, and each of the edge elements being electrically isolated from the ground plate by an insulative isolation gap; and a plurality of switches, each of which is selectively operable in response to the control signal to electrically connect selected edge elements to the ground plate across the insulative isolation gap so as to provide a selectively variable electromagnetic coupling geometry of the coupling edge.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: August 9, 2011
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Patent number: 7667660
    Abstract: A scanning antenna with an antenna element having an evanescent coupling portion includes a waveguide assembly including a transmission line, adjacent the coupling portion, through which an electromagnetic signal is transmitted, permitting evanescent coupling of the signal between the transmission line and the antenna element. First and second conductive waveguide plates, on opposite sides of the transmission line, define planes that are substantially parallel to the axis of the transmission line, each plate extending distally from a proximal end adjacent the antenna element, whereby the propagated signal forms a beam that is confined to the space between the plates and thus limited to a plane that is parallel to the planes defined by the plates. The signal coupled between the transmission line and the antenna element is preferably polarized so that its electric field component is in a plane parallel to the planes defined by the plates.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: February 23, 2010
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Publication number: 20100001917
    Abstract: A waveguide includes a dielectric substrate having first and second opposed surfaces defining a longitudinal wave propagation path therebetween; and a conductive grid on the first surface of the substrate and comprising a plurality of substantially parallel metal strips, each defining an axis. The grid renders the first surface of the substrate opaque to a longitudinal electromagnetic wave propagating along the longitudinal wave propagation path and polarized in a direction substantially parallel to the axes of the strips. The grid allows the first surface of the substrate to be transparent to a transverse electromagnetic wave having a transverse propagation path that intersects the first and second surfaces of the substrate and having a polarization in a direction substantially normal to the plurality of metal strips. A diffraction grating on the second surface allows the waveguide to function as an antenna element that may be employed in a beam-steering antenna system.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 7, 2010
    Inventors: Vladimir Manasson, Victor Khodos, Lev Sadovnik, Aramais Avakian, Vladimir Litvinov, Dexin Jia, Mikhail Felman, Mark Aretskin
  • Publication number: 20090322611
    Abstract: An electronically controlled monolithic array antenna includes a transmission line through which an electromagnetic signal may be propagated, and a metal antenna element defining an evanescent coupling edge located so as to permit evanescent coupling of the signal between the transmission line and the antenna element. The antenna element includes a conductive ground plate; an array of conductive edge elements defining the coupling edge, each of the edge elements being electrically connected to a control signal source, and each of the edge elements being electrically isolated from the ground plate by an insulative isolation gap; and a plurality of switches, each of which is selectively operable in response to the control signal to electrically connect selected edge elements to the ground plate across the insulative isolation gap so as to provide a selectively variable electromagnetic coupling geometry of the coupling edge.
    Type: Application
    Filed: September 8, 2009
    Publication date: December 31, 2009
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Patent number: 7609223
    Abstract: An electronically controlled monolithic array antenna includes a transmission line through which an electromagnetic signal may be propagated, and a metal antenna element defining an evanescent coupling edge located so as to permit evanescent coupling of the signal between the transmission line and the antenna element. The antenna element includes a conductive ground plate; an array of conductive edge elements defining the coupling edge, each of the edge elements being electrically connected to a control signal source, and each of the edge elements being electrically isolated from the ground plate by an insulative isolation gap; and a plurality of switches, each of which is selectively operable in response to the control signal to electrically connect selected edge elements to the ground plate across the insulative isolation gap so as to provide a selectively variable electromagnetic coupling geometry of the coupling edge.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: October 27, 2009
    Assignee: Sierra Nevada Corporation
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Publication number: 20090243950
    Abstract: A scanning antenna with an antenna element having an evanescent coupling portion includes a waveguide assembly including a transmission line, adjacent the coupling portion, through which an electromagnetic signal is transmitted, permitting evanescent coupling of the signal between the transmission line and the antenna element. First and second conductive waveguide plates, on opposite sides of the transmission line, define planes that are substantially parallel to the axis of the transmission line, each plate extending distally from a proximal end adjacent the antenna element, whereby the propagated signal forms a beam that is confined to the space between the plates and thus limited to a plane that is parallel to the planes defined by the plates. The signal coupled between the transmission line and the antenna element is preferably polarized so that its electric field component is in a plane parallel to the planes defined by the plates.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian
  • Publication number: 20090153432
    Abstract: An electronically controlled monolithic array antenna includes a transmission line through which an electromagnetic signal may be propagated, and a metal antenna element defining an evanescent coupling edge located so as to permit evanescent coupling of the signal between the transmission line and the antenna element. The antenna element includes a conductive ground plate; an array of conductive edge elements defining the coupling edge, each of the edge elements being electrically connected to a control signal source, and each of the edge elements being electrically isolated from the ground plate by an insulative isolation gap; and a plurality of switches, each of which is selectively operable in response to the control signal to electrically connect selected edge elements to the ground plate across the insulative isolation gap so as to provide a selectively variable electromagnetic coupling geometry of the coupling edge.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Inventors: Vladimir Manasson, Vladimir I. Litvinov, Lev Sadovnik, Mark Aretskin, Mikhail Felman, Aramais Avakian