Patents by Inventor Mark Baerenrodt

Mark Baerenrodt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180189568
    Abstract: Embodiments of a wearable device can include a head-mounted display (HMD) which can be configured to display virtual content. While the user is interacting with visual or audible virtual content, the user of the wearable may encounter a triggering event such as, for example, an emergency condition or an unsafe condition, detecting one or more triggering objects in an environment, or determining characteristics of the user's environment (e.g., home or office). Embodiments of the wearable device can automatically detect the triggering event and automatically control the HMD to deemphasize, block, or stop displaying the virtual content. The HMD may include a button that can be actuated by the user to manually deemphasize, block, or stop displaying the virtual content.
    Type: Application
    Filed: November 17, 2017
    Publication date: July 5, 2018
    Inventors: James M. Powderly, Savannah Niles, Nicole Elizabeth Samec, Ali Amirhooshmand, Nastasja U. Robaina, Christopher M. Harrises, Mark Baerenrodt, Carlos A. Rivera Cintron, Brian Keith Smith
  • Publication number: 20180180890
    Abstract: An optical device includes variable optical material that alters at least one of: incident ambient light, spectral content of incident ambient light or direction of incident ambient light through the optical device in response to a stimulus provided by the device. The device can sense intensity and/or spectral characteristics of ambient light and provide appropriate stimulus to various portions of the optical device to activate the variable optical material and alter at least one of: incident ambient light, spectral content of incident ambient light or direction of incident ambient light.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 28, 2018
    Inventors: Eric Baerenrodt, Nastasja U. Robaina, Nicole Elizabeth Samec, Christopher M. Harrises, Mark Baerenrodt
  • Publication number: 20180182173
    Abstract: An augmented reality display system is configured to use fiducial markers to align 3D content with real objects. The augmented reality display system can optionally include a depth sensor configured to detect a location of a real object. The augmented reality display system can also include a light source configured to illuminate at least a portion of the object with invisible light, and a light sensor configured to form an image using reflected portion of the invisible light. Processing circuitry of the display system can identify a location marker based on the difference between the emitted light and the reflected light and determine an orientation of the real object based on the location of the real object and a location of the location marker.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 28, 2018
    Inventors: Nastasja U. Robaina, Nicole Elizabeth Samec, Gregory Michael Link, Mark Baerenrodt
  • Publication number: 20180160956
    Abstract: Various embodiments of a user-wearable device can comprise a frame configured to mount on a user. The device can include a display attached to the frame and configured to direct virtual images to an eye of the user. The device can also include a light source configured to provide polarized light to the eye of the user and that the polarized light is configured to reflect from the eye of the user. The device can further include a light analyzer configured to determine a polarization angle rotation of the reflected light from the eye of the user such that a glucose level of the user can be determined based at least in part on the polarization angle rotation of the reflected light.
    Type: Application
    Filed: November 8, 2017
    Publication date: June 14, 2018
    Inventors: Nastasja U. Robaina, Nicole Elizabeth Samec, Mark Baerenrodt
  • Publication number: 20180081179
    Abstract: In some embodiments, a system comprises a head-mounted frame removably coupleable to the user's head; one or more light sources coupled to the head-mounted frame and configured to emit light with at least two different wavelengths toward a target object in an irradiation field of view of the light sources; one or more electromagnetic radiation detectors coupled to the head-mounted member and configured to receive light reflected after encountering the target object; and a controller operatively coupled to the one or more light sources and detectors and configured to determine and display an output indicating the identity or property of the target object as determined by the light properties measured by the detectors in relation to the light properties emitted by the light sources.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 22, 2018
    Inventors: Nicole Elizabeth Samec, Nastasja U. Robaina, Adrian Kaehler, Mark Baerenrodt, Eric Baerenrodt, Christopher M. Harrises, Tammy Sherri Powers
  • Publication number: 20170365101
    Abstract: In some embodiments, a display system comprising a head-mountable, augmented reality display is configured to perform a neurological analysis and to provide a perception aid based on an environmental trigger associated with the neurological condition. Performing the neurological analysis may include determining a reaction to a stimulus by receiving data from the one or more inwardly-directed sensors; and identifying a neurological condition associated with the reaction. In some embodiments, the perception aid may include a reminder, an alert, or virtual content that changes a property, e.g. a color, of a real object. The augmented reality display may be configured to display virtual content by outputting light with variable wavefront divergence, and to provide an accommodation-vergence mismatch of less than 0.5 diopters, including less than 0.25 diopters.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 21, 2017
    Inventors: Nicole Elizabeth Samec, Christopher M. Harrises, Mark Baerenrodt, Stephen Vincent Mangiat, Nastasja U. Robaina, Adam Carl Wright
  • Publication number: 20170323485
    Abstract: Augmented reality systems and methods for user health analysis. Methods for user health analysis may include collecting data for an initial prediction model and continuing to collect additional data based on one or more data criteria. The methods may further include updating the initial prediction model based on the additional data to produce a revised prediction model or causing an intervention to occur based on the additional data. The data may be collected by a display system including one or more sensors configured to collect user-specific data and a display device configured to present virtual content to a user. The display device may be configured to output light with variable wavefront divergence.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 9, 2017
    Inventors: Nicole Elizabeth Samec, Mark Baerenrodt, Nastasja U. Robaina, Charlotte Dorothea Wilhelmina Vinkers, Christopher M. Harrises, Nicholas Kramer
  • Publication number: 20170237974
    Abstract: Methods and systems for reductions in switching between depth planes of a multi-depth plane display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. The system may monitor the fixation points based upon the gaze of each of the user's eyes, with each fixation point being a three-dimensional location in the user's field of view. Location information of virtual objects to be presented to the user are obtained, with each virtual object being associated with a depth plane. In some embodiments, the depth plane on which the virtual object is to be presented is modified based upon the fixation point of the user's eyes. For example, where the user is switching their fixation between virtual objects on two different depth planes, the display system may be configured to modify the presentation of one of the objects such that both objects are placed on the same depth plane.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 17, 2017
    Inventors: Nicole Elizabeth Samec, Nastasja U. Robaina, Christopher M. Harrises, Mark Baerenrodt
  • Publication number: 20170206691
    Abstract: A display system comprises a wearable display device for displaying augmented reality content. The display device comprises a display area comprising light redirecting features that are configured to direct light to a user. The display area is at least partially transparent and is configured to provide a view of an ambient environment through the display area. The display device is configured to determine that a reflection of the user is within the user's field of view through the display area. After making this determination, augmented reality content is displayed in the display area with the augmented reality content augmenting the user's view of the reflection. In some embodiments, the augmented reality content may overlie on the user's view of the reflection, thereby allowing all or portions of the reflection to appear to be modified to provide a realistic view of the user with various modifications made to their appearance.
    Type: Application
    Filed: January 18, 2017
    Publication date: July 20, 2017
    Inventors: Christopher M. Harrises, Nicole Elizabeth Samec, Nastasja U. Robaina, Mark Baerenrodt, Adam Carl Wright, Adrian Kaehler
  • Publication number: 20170017083
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 19, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007843
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham MacNamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007115
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007122
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007182
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007450
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007111
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007799
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007116
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170010470
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20170007123
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 12, 2017
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt