Patents by Inventor Mark C. Mendrick

Mark C. Mendrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11251330
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 15, 2022
    Assignee: CRYSTAL IS, INC.
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Publication number: 20170179336
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Patent number: 9620676
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 11, 2017
    Assignee: CRYSTAL IS, INC.
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Publication number: 20160225949
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Application
    Filed: February 18, 2016
    Publication date: August 4, 2016
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Patent number: 9299880
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 29, 2016
    Assignee: Crystal IS, Inc.
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Publication number: 20150280057
    Abstract: In various embodiments, smooth contact layers are formed on polarization-doped light-emitting devices to enable high photon extraction efficiencies.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 1, 2015
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Publication number: 20140264263
    Abstract: In various embodiments, light-emitting devices incorporate smooth contact layers and polarization doping (i.e., underlying layers substantially free of dopant impurities) and exhibit high photon extraction efficiencies.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: James R. Grandusky, Leo J. Schowalter, Muhammad Jamil, Mark C. Mendrick, Shawn R. Gibb
  • Publication number: 20140234740
    Abstract: In one embodiment, a membrane electrode assembly of a fuel cell has an anode aspect and a cathode aspect. A fuel distribution structure is disposed adjacent to the anode aspect. The fuel distribution structure has a fuel feed port configured to receive and inject liquid fuel to a flow field plate. The flow field plate has flow channels formed therein that split and spread from the fuel feed port to exit ports. The flow channels are configured to convey heat to fuel passing there through to substantially convert the liquid fuel to vaporous fuel within the flow channels. The exit ports are configured to deliver the resulting vaporous fuel to the anode aspect to substantially uniformly distribute fuel across the anode aspect. Further, an enthalpy exchanger and heat spreader assembly is in thermal contact with the fuel distribution structure and configured to provide to it heat from fuel cell operation.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: MTI MicroFuel Cells Inc.
    Inventors: David H. Leach, Michael L. Chen, Charles M. Carlstrom, JR., Constantinos Minas, Keith G. Brown, Robert Miller, James K. Prueitt, John E. Meschter, Amit Chaugule, Mark C. Mendrick, Russel H. Marvin
  • Patent number: 8735012
    Abstract: A fuel cell system which includes a fuel distribution structure that uniformly distributes vaporizing fuel to a fuel cell is provided. As the fuel travels in a flow field channel in the fuel distribution structure, it is substantially converted to a vapor by the heat of the fuel cell operation in such a manner that the resulting vapor pressure works to substantially uniformly distribute fuel evenly outwardly across substantially the entire active area of the anode aspect of one or more membrane electrode assemblies in the system, and whereby localized, uneven “hot spots” of fuel at the anode aspects are substantially prevented. A pair of enthalpy exchanger and heat spreader assemblies include a cathode current collector element that also has a heat spreader plate that collects and redirects heat in the fuel cell system, the assembly acting to manage the heat, temperature and condensation in the fuel cell system.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 27, 2014
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: David Leach, Michael L. Chen, Charles M. Carlstrom, Jr., Constantinos Minas, Keith G. Brown, Robert Miller, James K. Prueitt, John E. Meschter, Amit Chaugule, Russel H. Marvin, Mark C. Mendrick
  • Publication number: 20100124677
    Abstract: A fuel cell system which includes a fuel distribution structure that uniformly distributes vaporizing fuel to a fuel cell is provided. As the fuel travels in a flow field channel in the fuel distribution structure, it is substantially converted to a vapor by the heat of the fuel cell operation in such a manner that the resulting vapor pressure works to substantially uniformly distribute fuel evenly outwardly across substantially the entire active area of the anode aspect of one or more membrane electrode assemblies in the system, and whereby localized, uneven “hot spots” of fuel at the anode aspects are substantially prevented. A pair of enthalpy exchanger and heat spreader assemblies include a cathode current collector element that also has a heat spreader plate that collects and redirects heat in the fuel cell system, the assembly acting to manage the heat, temperature and condensation in the fuel cell system.
    Type: Application
    Filed: November 20, 2008
    Publication date: May 20, 2010
    Inventors: David Leach, Michael L. Chen, Charles M. Carlstorm, JR., Constantinos Minas, Keith G. Brown, Robert Miller, James K. Prueitt, John E. Meschter, Amit Chaugule, Russel H. Marvin, Mark C. Mendrick
  • Publication number: 20030002839
    Abstract: A mount apparatus, and methods for forming and using the same, are disclosed for at least one coupling optic requiring alignment along an optical transmission axis. A flanged optical assembly tube is provided, within which the coupling optic is placed along an optical transmission axis, the tube having a flange projecting outwardly from its surface. A mount for supporting the tube is provided, having a base section and an upright section perpendicular to the base. The upright section of the mount includes a vertical surface against which at least one surface of the flange of the tube is affixed. Structural and corrective laser welding techniques are disclosed for permanently mounting and aligning the mount apparatus in an optical component package, aligned with other devices. One such optical component disclosed is an optical waveguide amplifier, having a channel waveguide to and from which aligned optical signals are transmitted.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 2, 2003
    Applicant: Molecular OptoElectronics Corporation
    Inventors: Lawrence P. Clow, Gary O. Jameson, Brian L. Lawrence, Thomas P. Maney, Mark C. Mendrick