Patents by Inventor Mark C. Platshon

Mark C. Platshon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11121396
    Abstract: An electrode includes one or more intermediate layers positioned between a substrate and an electrochemically active material. Intermediate layers may be made from chromium, titanium, tantalum, tungsten, nickel, molybdenum, lithium, as well as other materials and their combinations. In certain embodiments, an active material includes one or more high capacity active materials, such as silicon, tin, and germanium. These materials tend to swell during cycling and may loose mechanical and/or electrical connection to the substrate. A flexible intermediate layer may compensate for swelling and provide a robust adhesion interface. Methods of fabricating electrodes involve forming metal silicide nanostructures.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: September 14, 2021
    Assignee: Amprius, Inc.
    Inventors: William S. Delhagen, Rainer J. Fasching, Ghyrn E. Loveness, Song Han, Eugene M. Berdichevsky, Constantin Ionel Stefan, Yi Cui, Mark C. Platshon
  • Publication number: 20210104730
    Abstract: A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
    Type: Application
    Filed: October 19, 2020
    Publication date: April 8, 2021
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Patent number: 10811675
    Abstract: A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: October 20, 2020
    Assignee: Amprius, Inc.
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Publication number: 20190181489
    Abstract: Provided are novel electrodes for use in lithium ion batteries. An electrode includes one or more intermediate layers positioned between a substrate and an electrochemically active material. Intermediate layers may be made from chromium, titanium, tantalum, tungsten, nickel, molybdenum, lithium, as well as other materials and their combinations. An intermediate layer may protect the substrate, help to redistribute catalyst during deposition of the electrochemically active material, improve adhesion between the active material and substrate, and other purposes. In certain embodiments, an active material includes one or more high capacity active materials, such as silicon, tin, and germanium. These materials tend to swell during cycling and may loose mechanical and/or electrical connection to the substrate. A flexible intermediate layer may compensate for swelling and provide a robust adhesion interface. Provided also are novel methods of fabricating electrodes containing one or more intermediate layers.
    Type: Application
    Filed: November 5, 2018
    Publication date: June 13, 2019
    Inventors: William S. Delhagen, Rainer J. Fasching, Ghyrn E. Loveness, Song Han, Eugene M. Berdichevsky, Constantin Ionel Stefan, Yi Cui, Mark C. Platshon
  • Publication number: 20190058186
    Abstract: A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 21, 2019
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Patent number: 10090512
    Abstract: A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: October 2, 2018
    Assignee: Amprius, Inc.
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Publication number: 20150004495
    Abstract: Provided are novel negative electrodes for use in lithium ion cells. The negative electrodes include one or more high capacity active materials, such as silicon, tin, and germanium, and a lithium containing material prior to the first cycle of the cell. In other words, the cells are fabricated with some, but not all, lithium present on the negative electrode. This additional lithium may be used to mitigate lithium losses, for example, due to Solid Electrolyte Interphase (SEI) layer formation, to maintain the negative electrode in a partially charged state at the end of the cell discharge cycle, and other reasons. In certain embodiments, a negative electrode includes between about 5% and 25% of lithium based on a theoretical capacity of the negative active material. In the same or other embodiments, a total amount of lithium available in the cell exceeds the theoretical capacity of the negative electrode active material.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 1, 2015
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Patent number: 8846251
    Abstract: Provided are novel negative electrodes for use in lithium ion cells. The negative electrodes include one or more high capacity active materials, such as silicon, tin, and germanium, and a lithium containing material prior to the first cycle of the cell. In other words, the cells are fabricated with some, but not all, lithium present on the negative electrode. This additional lithium may be used to mitigate lithium losses, for example, due to Solid Electrolyte Interphase (SEI) layer formation, to maintain the negative electrode in a partially charged state at the end of the cell discharge cycle, and other reasons. In certain embodiments, a negative electrode includes between about 5% and 25% of lithium based on a theoretical capacity of the negative active material. In the same or other embodiments, a total amount of lithium available in the cell exceeds the theoretical capacity of the negative electrode active material.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: September 30, 2014
    Assignee: Amprius, Inc.
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Patent number: 8801810
    Abstract: Provided are methods of preparing a lithium ion cell including forming the cell by charging the lithium ion cell to at least about 5% or, more specifically, to at least about 20% of the theoretical capacity of the negative electrode electrochemically active material, holding the lithium ion cell in a charged state for at least about 0.5 hours, and discharging the lithium ion cell. Holding the lithium ion cell in a partially charged state is believed to significantly improve its Coulombic efficiency during subsequent cycling.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: August 12, 2014
    Assignee: Amprius, Inc.
    Inventors: Yi Cui, Eugene M. Berdichevsky, Graeme R. Hoste, Rainer J. Fasching, Song Han, Mark C. Platshon
  • Patent number: 8637185
    Abstract: Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: January 28, 2014
    Assignee: Amprius, Inc.
    Inventors: Eugene M. Berdichevsky, Song Han, Yi Cui, Rainer J. Fasching, Ghyrn E. Loveness, William S. DelHagen, Mark C. Platshon
  • Publication number: 20120183856
    Abstract: A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 19, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Publication number: 20110111300
    Abstract: Provided are novel electrodes for use in lithium ion batteries. An electrode includes one or more intermediate layers positioned between a substrate and an electrochemically active material. Intermediate layers may be made from chromium, titanium, tantalum, tungsten, nickel, molybdenum, lithium, as well as other materials and their combinations. An intermediate layer may protect the substrate, help to redistribute catalyst during deposition of the electrochemically active material, improve adhesion between the active material and substrate, and other purposes. In certain embodiments, an active material includes one or more high capacity active materials, such as silicon, tin, and germanium. These materials tend to swell during cycling and may loose mechanical and/or electrical connection to the substrate. A flexible intermediate layer may compensate for swelling and provide a robust adhesion interface. Provided also are novel methods of fabricating electrodes containing one or more intermediate layers.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 12, 2011
    Applicant: AMPRIUS INC.
    Inventors: William S. DelHagen, Rainer J. Fasching, Ghyrn E. Loveness, Song Han, Eugene M. Berdichevsky, Constantin I. Stefan, Yi Cui, Mark C. Platshon
  • Publication number: 20110111296
    Abstract: Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 12, 2011
    Applicant: AMPRIUS, INC.
    Inventors: Eugene M. Berdichevsky, Song Han, Yi Cui, Rainer J. Fasching, Ghyrn E. Loveness, William S. DelHagen, Mark C. Platshon
  • Publication number: 20110111304
    Abstract: Provided are novel negative electrodes for use in lithium ion cells. The negative electrodes include one or more high capacity active materials, such as silicon, tin, and germanium, and a lithium containing material prior to the first cycle of the cell. In other words, the cells are fabricated with some, but not all, lithium present on the negative electrode. This additional lithium may be used to mitigate lithium losses, for example, due to Solid Electrolyte Interphase (SEI) layer formation, to maintain the negative electrode in a partially charged state at the end of the cell discharge cycle, and other reasons. In certain embodiments, a negative electrode includes between about 5% and 25% of lithium based on a theoretical capacity of the negative active material. In the same or other embodiments, a total amount of lithium available in the cell exceeds the theoretical capacity of the negative electrode active material.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 12, 2011
    Applicant: AMPRIUS, INC.
    Inventors: Yi Cui, Song Han, Mark C. Platshon
  • Publication number: 20100330419
    Abstract: Provided are electrode assemblies that contain electrochemically active materials for use in batteries, such as lithium ion batteries. Provided also are methods for fabricating these assemblies. In certain embodiments, fabrication involves one or more electrospinning operations such as, for example, electrospinning to deposit a layer of fibers on a conductive substrate. These fibers may include one or more electrochemically active materials. In the same or other embodiments, these or similar fibers can serve as templates for depositing one or more electrochemically active materials. Some examples of active materials include silicon, tin, and/or germanium. Also provided are electrode fibers that include cores containing a first active material and shells or optionally second shells (surrounding inner shells) containing a second active material. The second active material is electrochemically opposite to the first active material. One or more shells can function as a separator and/or as an electrolyte.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 30, 2010
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness, Mark C. Platshon
  • Publication number: 20100285358
    Abstract: A lithium ion battery electrode includes silicon nanowires used for insertion of lithium ions and including a conductivity enhancement, the nanowires growth-rooted to the conductive substrate.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 11, 2010
    Applicant: AMPRIUS, INC.
    Inventors: Yi Cui, Song Han, Mark C. Platshon