Patents by Inventor Mark C. Stasik

Mark C. Stasik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9951757
    Abstract: Methods and systems are provided for combined direct current and alternating current activation of electroactive polymer devices. The combined direct current and alternating current activation may increase force generation compared to activation using direct current alone. For example, a method for actuating an electroactive polymer device may include providing the electroactive polymer device. The electroactive polymer device may include a first electrode and a second electrode electrically coupled to an electroactive polymer. The method may include applying a direct current across the electroactive polymer via the first and second electrodes. The method may include applying an alternating current across the electroactive polymer. The direct current and the alternating current may be effective to cause actuation of the electroactive polymer device.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 24, 2018
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Mark C. Stasik, Jay R. Sayre
  • Publication number: 20160036353
    Abstract: Methods and systems are provided for combined direct current and alternating current activation of electroactive polymer devices. The combined direct current and alternating current activation may increase force generation compared to activation using direct current alone. For example, a method for actuating an electroactive polymer device may include providing the electroactive polymer device. The electroactive polymer device may include a first electrode and a second electrode electrically coupled to an electroactive polymer. The method may include applying a direct current across the electroactive polymer via the first and second electrodes. The method may include applying an alternating current across the electroactive polymer. The direct current and the alternating current may be effective to cause actuation of the electroactive polymer device.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Inventors: Mark C. Stasik, Jay R. Sayre
  • Patent number: 8481184
    Abstract: This invention relates in general to components of electrochemical devices, and to methods of preparing the components. The components and methods include the use of a composition comprising an ionically conductive polymer and at least one solvent, where the polymer and the solvent are selected based on the thermodynamics of the combination. In one embodiment, the invention relates to a component for an electrochemical device which is prepared from a composition comprising a true solution of an ionically conductive polymer and at least one solvent, the polymer and the at least one solvent being selected such that |? solvent?? solute|<1, where ? solvent is the Hildebrand solubility parameter of the at least one solvent and where ? solute is the Hildebrand solubility parameter of the polymer.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: July 9, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Jay R. Sayre, Megan E. Sesslar, James L. White, John R. Stickel, Mark C. Stasik, Bhima R. Vijayendran
  • Publication number: 20120276470
    Abstract: This invention relates in general to components of electrochemical devices, and to methods of preparing the components. The components and methods include the use of a composition comprising an ionically conductive polymer and at least one solvent, where the polymer and the solvent are selected based on the thermodynamics of the combination. In one embodiment, the invention relates to a component for an electrochemical device which is prepared from a composition comprising a true solution of an ionically conductive polymer and at least one solvent, the polymer and the at least one solvent being selected such that |? solvent-? solute|<1, where ? solvent is the Hildebrand solubility parameter of the at least one solvent and where ? solute is the Hildebrand solubility parameter of the polymer.
    Type: Application
    Filed: February 24, 2012
    Publication date: November 1, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jay R. Sayre, Megan E. Sesslar, James L. White, John R. Stickel, Mark C. Stasik, Bhima R. Vijayendran
  • Patent number: 8124260
    Abstract: This invention relates in general to components of electrochemical devices, and to methods of preparing the components. The components and methods include the use of a composition comprising an ionically conductive polymer and at least one solvent, where the polymer and the solvent are selected based on the thermodynamics of the combination. In one embodiment, the invention relates to a component for an electrochemical device which is prepared from a composition comprising a true solution of an ionically conductive polymer and at least one solvent, the polymer and the at least one solvent being selected such that |? solvent?? solute|<1, where ? solvent is the Hildebrand solubility parameter of the at least one solvent and where ? solute is the Hildebrand solubility parameter of the polymer.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 28, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Jay R. Sayre, Megan E. Sesslar, James L. White, John R. Stickel, Mark C. Stasik, Bhima R. Vijayendran
  • Publication number: 20080248362
    Abstract: This invention relates in general to components of electrochemical devices, and to methods of preparing the components. The components and methods include the use of a composition comprising an ionically conductive polymer and at least one solvent, where the polymer and the solvent are selected based on the thermodynamics of the combination. In one embodiment, the invention relates to a component for an electrochemical device which is prepared from a composition comprising a true solution of an ionically conductive polymer and at least one solvent, the polymer and the at least one solvent being selected such that |? solvent?? solute|<1, where ? solvent is the Hildebrand solubility parameter of the at least one solvent and where ? solute is the Hildebrand solubility parameter of the polymer.
    Type: Application
    Filed: November 16, 2005
    Publication date: October 9, 2008
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jay R. Sayre, Megan E. Sesslar, James L. White, John R. Stickel, Mark C. Stasik, Bhima R. Vijayendran