Patents by Inventor Mark Charney
Mark Charney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250117218Abstract: Techniques for converting FP16 to BF8 using bias are described.Type: ApplicationFiled: October 25, 2024Publication date: April 10, 2025Inventors: Alexander Heinecke, Naveen Mellempudi, Robert Valentine, Mark Charney, Christopher Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
-
Patent number: 12229554Abstract: Techniques for performing BF16 FMA in response to an instruction are described. In some examples, an instruction has fields for an opcode, an identification of location of a packed data source/destination operand (a first source), an identification of a location of a second packed data source operand, an identification of a location of a third packed data source operand, and an identification of location of a packed data source/destination operand, wherein the opcode is to indicate operand ordering and that execution circuitry is to, per data element position, perform a BF16 value fused multiply-accumulate operation using the first, second, and third source operands and store a result in a corresponding data element position of the source/destination operand.Type: GrantFiled: August 31, 2021Date of Patent: February 18, 2025Assignee: Intel CorporationInventors: Alexander Heinecke, Menachem Adelman, Robert Valentine, Zeev Sperber, Amit Gradstein, Mark Charney, Evangelos Georganas, Dhiraj Kalamkar, Christopher Hughes, Cristina Anderson
-
Publication number: 20250045022Abstract: Complex matrix transpose and multiply operations are described.Type: ApplicationFiled: October 25, 2024Publication date: February 6, 2025Inventors: Menachem ADELMAN, Robert VALENTINE, Daniel TOWNER, Amit GRADSTEIN, Mark CHARNEY
-
Patent number: 12204903Abstract: Techniques for matrix multiplication are described. In some examples, a single instruction having a format of fields for an opcode, one or more fields to indicate a location of a source/destination operand, one or more fields to indicate a location of a first source operand, and one or more fields to indicate a location of a second source operand is used. Wherein the opcode is to indicate that execution circuitry is to: multiply values from corresponding data elements of the first and second sources, add a first subset of the multiplied values to a first value from the source/destination operand and store in a first data element position of the source/destination operand, and add a second subset of the multiplied values to a second value from the source/destination operand and store in a second data element position of the source/destination operand.Type: GrantFiled: June 26, 2021Date of Patent: January 21, 2025Assignee: Intel CorporationInventors: Venkateswara Madduri, Cristina Anderson, Robert Valentine, Mark Charney, Vedvyas Shanbhogue
-
Publication number: 20240427600Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.Type: ApplicationFiled: September 6, 2024Publication date: December 26, 2024Applicant: Intel CorporationInventors: Robert C. VALENTINE, Jesus Corbal SAN ADRIAN, Roger Espasa SANS, Robert D. CAVIN, Bret L. TOLL, Santiago Galan DURAN, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Edward Thomas GROCHOWSKI, Jonathan Cannon HALL, Dennis R. BRADFORD, Elmoustapha OULD-AHMED-VALL, James C ABEL, Mark CHARNEY, Seth ABRAHAM, Suleyman SAIR, Andrew Thomas FORSYTH, Lisa WU, Charles YOUNT
-
Patent number: 12135968Abstract: Techniques for converting FP16 to BF8 using bias are described.Type: GrantFiled: December 26, 2020Date of Patent: November 5, 2024Assignee: Intel CorporationInventors: Alexander Heinecke, Naveen Mellempudi, Robert Valentine, Mark Charney, Christopher Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
-
Patent number: 12099838Abstract: In an embodiment, a processor includes: a fetch circuit to fetch instructions, the instructions including a sum of squared differences (SSD) instruction; a decode circuit to decode the SSD instruction; and an execution circuit to, during an execution of the decoded SSD instruction, generate an SSD output vector based on a plurality of input vectors, the SSD output vector including a plurality of squared differences values. Other embodiments are described and claimed.Type: GrantFiled: December 23, 2020Date of Patent: September 24, 2024Assignee: Intel CorporationInventors: Deepti Aggarwal, Michael Espig, Chekib Nouira, Robert Valentine, Mark Charney
-
Patent number: 12086594Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.Type: GrantFiled: August 28, 2023Date of Patent: September 10, 2024Assignee: Intel CorporationInventors: Robert C. Valentine, Jesus Corbal San Adrian, Roger Espasa Sans, Robert D. Cavin, Bret L. Toll, Santiago Galan Duran, Jeffrey G. Wiedemeier, Sridhar Samudrala, Milind Baburao Girkar, Edward Thomas Grochowski, Jonathan Cannon Hall, Dennis R. Bradford, Elmoustapha Ould-Ahmed-Vall, James C Abel, Mark Charney, Seth Abraham, Suleyman Sair, Andrew Thomas Forsyth, Lisa Wu, Charles Yount
-
Patent number: 12086595Abstract: Systems, methods, and apparatuses relating to interleaving data values. An embodiment includes decoding circuitry to decode a single instruction, the instruction having one or more fields to specify an opcode, one or more fields to specify a location of a first source operand, one or more fields to specify a location of a second source operand, one or more fields to specify a location of a destination operand, and one or more fields to specify an index value to be used to index a row in the first source operand, wherein the opcode is to indicate execution circuitry is to downconvert data elements of the indexed row of the first source operand, interleave the downconverted elements with data elements of the second source operand, and store the interleaved elements in the destination operand; and execution circuitry to execute the decoded instruction according to the opcode.Type: GrantFiled: March 27, 2021Date of Patent: September 10, 2024Assignee: Intel CorporationInventors: Menachem Adelman, Robert Valentine, Amit Gradstein, Daniel Towner, Mark Charney
-
Publication number: 20240248720Abstract: Techniques for converting FP16 data elements to BF8 data elements using a single instruction are described. An exemplary apparatus includes decoder circuitry to decode a single instruction, the single instruction to include a one or more fields to identify a source operand, one or more fields to identify a destination operand, and one or more fields for an opcode, the opcode to indicate that execution circuitry is to convert packed half-precision floating-point data from the identified source to packed bfloat8 data and store the packed bfloat8 data into corresponding data element positions of the identified destination operand; and execution circuitry to execute the decoded instruction according to the opcode to convert packed half-precision floating-point data from the identified source to packed bfloat8 data and store the packed bfloat8 data into corresponding data element positions.Type: ApplicationFiled: April 5, 2024Publication date: July 25, 2024Inventors: Alexander Heinecke, Naveen Mellempudi, Robert Valentine, Mark Charney, Christopher Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
-
Publication number: 20240248722Abstract: Systems, methods, and apparatuses relating to instructions to reset software thread runtime property histories in a hardware processor are described. In one embodiment, a hardware processor includes a hardware guide scheduler comprising a plurality of software thread runtime property histories; a decoder to decode a single instruction into a decoded single instruction, the single instruction having a field that identifies a model-specific register; and an execution circuit to execute the decoded single instruction to check that an enable bit of the model-specific register is set, and when the enable bit is set, to reset the plurality of software thread runtime property histories of the hardware guide scheduler.Type: ApplicationFiled: April 4, 2024Publication date: July 25, 2024Inventors: Eliezer WEISSMANN, Mark CHARNEY, Michael MISHAELI, Robert VALENTINE, Itai RAVID, Jason W. BRANDT, Gilbert NEIGER, Baruch CHAIKIN, Efraim ROTEM
-
Publication number: 20240184585Abstract: Techniques for comparing BF16 data elements are described. An exemplary BF16 comparison instruction includes fields for an opcode, an identification of a location of a first packed data source operand, and an identification of a location of a second packed data source operand, wherein the opcode is to indicate that execution circuitry is to perform, for a particular data element position of the packed data source operands, a comparison of a data element at that position, and update a flags register based on the comparison.Type: ApplicationFiled: February 8, 2024Publication date: June 6, 2024Inventors: Alexander HEINECKE, Menachem ADELMAN, Robert VALENTINE, Zeev SPERBER, Amit GRADSTEIN, Mark CHARNEY, Evangelos GEORGANAS, Dhiraj KALAMKAR, Christopher HUGHES, Cristina ANDERSON
-
Patent number: 11966742Abstract: Systems, methods, and apparatuses relating to instructions to reset software thread runtime property histories in a hardware processor are described. In one embodiment, a hardware processor includes a hardware guide scheduler comprising a plurality of software thread runtime property histories; a decoder to decode a single instruction into a decoded single instruction, the single instruction having a field that identifies a model-specific register; and an execution circuit to execute the decoded single instruction to check that an enable bit of the model-specific register is set, and when the enable bit is set, to reset the plurality of software thread runtime property histories of the hardware guide scheduler.Type: GrantFiled: May 3, 2023Date of Patent: April 23, 2024Assignee: Intel CorporationInventors: Eliezer Weissmann, Mark Charney, Michael Mishaeli, Robert Valentine, Itai Ravid, Jason W. Brandt, Gilbert Neiger, Baruch Chaikin, Efraim Rotem
-
Patent number: 11960884Abstract: An embodiment of the invention is a processor including execution circuitry to calculate, in response to a decoded instruction, a result of a complex multiplication of a first complex number and a second complex number. The calculation includes a first operation to calculate a first term of a real component of the result and a first term of the imaginary component of the result. The calculation also includes a second operation to calculate a second term of the real component of the result and a second term of the imaginary component of the result. The processor also includes a decoder, a first source register, and a second source register. The decoder is to decode an instruction to generate the decoded instruction. The first source register is to provide the first complex number and the second source register is to provide the second complex number.Type: GrantFiled: November 2, 2021Date of Patent: April 16, 2024Assignee: Intel CorporationInventors: Robert Valentine, Mark Charney, Raanan Sade, Elmoustapha Ould-Ahmed-Vall, Jesus Corbal, Roman S. Dubtsov
-
Publication number: 20240061683Abstract: A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.Type: ApplicationFiled: August 28, 2023Publication date: February 22, 2024Inventors: Robert C. VALENTINE, Jesus Corbal SAN ADRIAN, Roger Espasa SANS, Robert D. CAVIN, Bret L. TOLL, Santiago Galan DURAN, Jeffrey G. WIEDEMEIER, Sridhar SAMUDRALA, Milind Baburao GIRKAR, Edward Thomas GROCHOWSKI, Jonathan Cannon HALL, Dennis R. BRADFORD, Elmoustapha OULD-AHMED-VALL, James C ABEL, Mark CHARNEY, Seth ABRAHAM, Suleyman SAIR, Andrew Thomas FORSYTH, Lisa WU, Charles YOUNT
-
Publication number: 20240045684Abstract: Techniques for converting FP16 to BF8 using bias are described.Type: ApplicationFiled: October 1, 2022Publication date: February 8, 2024Inventors: Alexander Heinecke, Menachem Adelman, Mark Charney, Evangelos Georganas, Amit Gradstein, Christopher Hughes, Naveen Mellempudi, Simon Rubanovich, Uri Sherman, Zeev Sperber, Robert Valentine
-
Publication number: 20240045677Abstract: Techniques for converting FP16 or FP32 data elements to FP8 data elements using a single instruction are described. An exemplary apparatus includes decoder circuitry to decode a single instruction, the single instruction to include a one or more fields to identify a source operand, one or more fields to identify a destination operand, and one or more fields for an opcode, the opcode to indicate that execution circuitry is to convert packed half-precision floating-point data or single-precision floating point data from the identified source to packed FP8 data and store the packed bfloat8 data into corresponding data element positions of the identified destination operand; and execution circuitry to execute the decoded instruction according to the opcode to convert packed half-precision floating-point data or single-precision floating point data from the identified source to packed bfloat8 data and store the packed bfloat8 data into corresponding data element positions.Type: ApplicationFiled: October 1, 2022Publication date: February 8, 2024Inventors: Alexander Heinecke, Menachem Adelman, Mark Charney, Evangelos Georganas, Amit Gradstein, Christopher Hughes, Naveen Mellempudi, Simon Rubanovich, Uri Sherman, Zeev Sperber, Robert Valentine
-
Patent number: 11809867Abstract: An apparatus and method for performing dual concurrent multiplications of packed data elements.Type: GrantFiled: September 21, 2020Date of Patent: November 7, 2023Assignee: Intel CorporationInventors: Venkateswara Madduri, Elmoustapha Ould-Ahmed-Vall, Jesus Corbal, Mark Charney, Robert Valentine, Binwei Yang
-
Patent number: 11768681Abstract: An apparatus and method for performing multiply-accumulate operations.Type: GrantFiled: January 24, 2018Date of Patent: September 26, 2023Assignee: Intel CorporationInventors: Alexander Heinecke, Dipankar Das, Robert Valentine, Mark Charney
-
Patent number: 11755323Abstract: An apparatus and method for multiplying packed real and imaginary components of complex numbers are described. A processor embodiment includes: a decoder to decode a first instruction to generate a decoded instruction; a first source register to store a first plurality of packed real and imaginary data elements; a second source register to store a second plurality of packed real and imaginary data elements; and execution circuitry to execute the decoded instruction.Type: GrantFiled: February 15, 2022Date of Patent: September 12, 2023Assignee: Intel CorporationInventors: Venkateswara Madduri, Elmoustapha Ould-Ahmed-Vall, Jesus Corbal, Mark Charney, Robert Valentine, Binwei Yang