Patents by Inventor Mark Christianson

Mark Christianson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210315694
    Abstract: The invention relates to a heart valve regurgitation drum and optional closure disk and/or tubular stent to manage and provide levels of intentional regurgitation within an orthogonally delivered transcatheter prosthetic heart valve having a first inner flow control component/valve, a second inner regurgitation control component, and an outer annular support frame having compressible wire cells that facilitate folding flat along the z-axis and compressing the valve vertically along the y-axis, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 14, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson, Neelakantan Saikrishnan
  • Publication number: 20210290381
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular Compression Capable Annular Frames for a side delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 23, 2021
    Applicant: VDYNE, INC.
    Inventors: ROBERT VIDLUND, MARK CHRISTIANSON, NEELAKANTAN SAIKRISHNAN
  • Publication number: 20210290385
    Abstract: Embodiments are described herein that relate to prosthetic heart valves, and devices and methods for use in the delivery and deployment of such valves.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert Vidlund, Neelakantan Saikrishnan
  • Patent number: 11109969
    Abstract: The invention relates to delivery system for deployment of a prosthetic valve, having a hypotube sheathed guidewire assembly having an outer sheath and an inner guidewire shaft that pushes against a guidewire collar on a tension arm of a compressed transcatheter valve to deliver the valve and position the valve to the RVOT or other location in the body.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 7, 2021
    Assignee: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson
  • Patent number: 11096782
    Abstract: Prosthetic heart valves are described herein that can provide clearance to the left ventricle outflow tract (LVOT), reduce the possibility of undesirable outflow gradients, and/or limit or prevent LVOT obstructions when implanted in the heart. In some embodiments, a prosthetic heart valve can include an outer frame having a cuff portion that is disposed at an angle (e.g., 80 degrees) relative to the vertical axis of a body portion of the outer frame, so that the prosthetic valve can seat securely in the annulus while not obstructing the ventricular outflow tract of the heart. In some embodiments, a prosthetic heart valve can alternatively, or additionally, include subvalvular components having a short profile, such that the prosthetic valve can seat securely in the annulus while not obstructing the ventricular outflow tract of the heart.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: August 24, 2021
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Michael Evans, Robert M. Vidlund
  • Publication number: 20210244536
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame defines a central channel that extends along a central axis. The flow control component is disposed within the central channel and coupled to the outer frame. The flow control component has a set of leaflets mounted within an inner frame. The prosthetic valve is configured to be folded along a longitudinal axis and compressed along the central axis to place the prosthetic valve in a compressed configuration for delivery via a delivery catheter. The longitudinal axis is substantially parallel to a lengthwise axis of the delivery catheter when disposed therein. The prosthetic valve transitions to an expanded configuration when released from the delivery catheter. The flow control component elastically deforms from a substantially cylindrical configuration to a substantially flattened configuration when the prosthetic valve is placed in the compressed configuration.
    Type: Application
    Filed: April 5, 2021
    Publication date: August 12, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan, Chad Perrin
  • Publication number: 20210244533
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: March 5, 2021
    Publication date: August 12, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Chad Ferrin, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Publication number: 20210236280
    Abstract: The invention relates to anchor channels and subannular anchors for a transcatheter heart valve replacement (A61F2/2412), and in particular for an orthogonally delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Application
    Filed: April 21, 2021
    Publication date: August 5, 2021
    Inventors: Mark CHRISTIANSON, Robert Vidlund, David Holtan, Lucas Harder
  • Patent number: 11076956
    Abstract: The present invention is directed to a proximal anchoring tab for a side delivered prosthetic mitral valve having an elongated distal tab, where the proximal tab anchors the proximal side of the prosthetic valve using a tab or loop deployed to the A3-P3 (proximal) commissure area of the mitral valve, and wherein the elongated distal tab is extended around the posterior P1-P2 leaflet and/or chordae using a guide wire to capture native mitral leaflet and/or chordae tissue and where withdrawing the guide wire contracts the tab and pins the native posterior tissue against the subannular posterior-side sidewall of the prosthetic valve.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 3, 2021
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Scott Kramer
  • Publication number: 20210228349
    Abstract: The invention relates to methods and devices for a transcatheter heart valve replacement (A61F2/2412), and in particular a device and method for percutaneously anchoring a transcatheter heart valve.
    Type: Application
    Filed: October 2, 2020
    Publication date: July 29, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, Mark CHRISTIANSON, David HOLTAN
  • Patent number: 11071627
    Abstract: The invention relates to a transcatheter heart valve replacement (A62F2/2412), and in particular an orthogonally delivered transcatheter prosthetic valve frame having a tubular frame for mounting a flow control component wherein the valve frame is compressible to a compressed configuration for sideways or lateral introduction into the body using a delivery catheter for implanting at a desired location in the body, where the compressed configuration has a long-axis oriented roughly perpendicular to the central axis of the native annulus, wherein the long-axis of the compressed configuration of the valve is substantially parallel to a length-wise cylindrical axis of the delivery catheter, and wherein the valve has a height of about 5-60 mm and a diameter of about 25-80 mm.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: July 27, 2021
    Assignee: VDyne, Inc.
    Inventors: Neelakantan Saikrishnan, Mark Christianson, Robert Vidlund
  • Publication number: 20210220134
    Abstract: A side-deliverable prosthetic heart valve includes an outer frame and a flow control component. The outer frame has a supra-annular region, a subannular region, and a transannular region therebetween. The flow control component is mounted to the outer frame such that at least a portion of the flow control component is disposed in the transannular region. The prosthetic valve has a delivery configuration for side-delivery via a delivery catheter and is expandable when the prosthetic valve is released from the delivery catheter. The subannular region of the outer frame is disposable in a first configuration as the prosthetic valve is seated in an annulus of a native heart valve and is transitionable to a second configuration after the prosthetic valve is seated in the annulus of the native heart valve.
    Type: Application
    Filed: February 4, 2021
    Publication date: July 22, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert VIDLUND, Neelakantan SAIKRISHNAN, Scott KRAMER, Chad PERRIN, Lucas HARDER
  • Publication number: 20210220127
    Abstract: A prosthetic heart valve includes a valve frame defining an aperture that extends along a central axis and a flow control component mounted within the aperture. The valve frame includes a distal anchoring element and a proximal anchoring element. The valve frame has a compressed configuration to allow the prosthetic heart valve to be delivered to a heart of a patient via a delivery catheter. The valve frame is configured to transition to an expanded configuration when released from the delivery catheter. The prosthetic heart valve is configured to be seated in a native annulus when the valve frame is in the expanded configuration. The distal and proximal anchoring elements configured to be inserted through the native annulus prior to seating the prosthetic heart valve. The proximal anchoring element is ready to be deployed subannularly or is optionally configured to be transitioned from a first configuration to a second configuration after the prosthetic valve is seated.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer
  • Publication number: 20210186693
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Applicant: VDyne, Inc.
    Inventors: Robert VIDLUND, I, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Chad Perrin, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Publication number: 20210154011
    Abstract: A prosthetic valve includes a frame and a flow control component. The frame has an aperture extending through the frame about a central axis. The flow control component is mounted within the aperture and is configured to permit blood flow in a first direction approximately parallel to the vertical axis from an inflow end to an outflow end of the flow control component and to block blood flow in a second direction, opposite the first direction. The frame has an expanded configuration with a first height along the central axis, a first lateral width along a lateral axis perpendicular to the central axis, and a first longitudinal length along a longitudinal axis perpendicular to the central axis and the lateral axis. The frame has a compressed configuration with a second height less than the first height and a second lateral width less than the first lateral width.
    Type: Application
    Filed: February 4, 2021
    Publication date: May 27, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert Vidlund, Neelakantan SAIKRISHNAN
  • Publication number: 20210137677
    Abstract: A side-deliverable prosthetic valve includes an outer frame, a flow control component mounted within the outer frame, and an anchoring element coupled to a distal side of the outer frame. The prosthetic valve is foldable along a longitudinal axis and compressible along a central axis to a compressed configuration for side delivery via a delivery catheter and is expandable to an expanded configuration when released from the delivery catheter. An end portion of the anchoring element is configured to engage a guide wire. The anchoring element is extended during deployment to allow the anchoring element to capture at least one of native leaflet or chordae and, in response to the guide wire being disengaged from the end portion, transitions to a folded configuration to secure at least one of the native leaflet or the chordae between the anchoring element and the distal side of the outer frame.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Applicant: VDyne, Inc.
    Inventors: Mark CHRISTIANSON, Robert Vidlund, Scott Kramer
  • Publication number: 20210000592
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular a side delivered transcatheter prosthetic valve having a tubular frame with a flow control component mounted within the tubular frame and configured to permit blood flow in a first direction through an inflow end of the valve and block blood flow in a second direction, opposite the first direction, through an outflow end of the valve, wherein the valve is compressible to a compressed configuration for introduction into the body using a delivery catheter for implanting at a desired location in the body, said compressed configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, and expandable to an expanded configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, wherein the long-axis of the compressed configuration of the valve is substantially parallel to a length-wise cylindrical axis of the deliv
    Type: Application
    Filed: June 17, 2019
    Publication date: January 7, 2021
    Applicant: VDyne, Inc.
    Inventors: MARK CHRISTIANSON, ROBERT VIDLUND, NEELAKANTAN SAIKRISHNAN
  • Publication number: 20200398047
    Abstract: Disclosed herein are a minimally invasive electrode and delivery device, along with various related components, devices, methods, and technologies. The delivery device comprises a proximal elongate shaft, a paddle coupled to a distal end of the proximal shaft, and an irrigation/suction sleeve disposable over the paddle. Disclosed also is a fan-like cortical electrode device comprising at least two electrode segments, wherein each of the at least two electrode segments comprises a thin film pad, a plurality of electrode contacts disposed on the thin film pad, and a proximal connector attached to a proximal end of the thin film pad.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 24, 2020
    Inventors: Michael C. Park, Mark A. Christianson, Timothy J. Kesti
  • Publication number: 20200345487
    Abstract: Apparatus and methods are described herein for use in the transvascular delivery and deployment of a prosthetic mitral valve. In some embodiments, a method includes inverting an outer frame of a prosthetic mitral valve when the valve is in a biased expanded configuration. After inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of a delivery sheath such that the mitral valve is moved to a collapsed configuration. The distal end portion of the delivery sheath is inserted into a left atrium of a heart. The prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic mitral valve assumes its biased expanded configuration. In some embodiments, actuation wires are used to assist in the reversion of the outer frame. The prosthetic mitral valve is then positioned within a mitral annulus of the heart.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Applicant: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Zachary R. Vidlund, Robert Vidlund, Igor Kovalsky, William Peckels, Michael Evans, Chad Perrin, John F. Otte, Son Mai
  • Patent number: 10786351
    Abstract: Apparatus and methods are described herein for use in the transvascular delivery and deployment of a prosthetic mitral valve. In some embodiments, a method includes inverting an outer frame of a prosthetic mitral valve when the valve is in a biased expanded configuration. After inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of a delivery sheath such that the mitral valve is moved to a collapsed configuration. The distal end portion of the delivery sheath is inserted into a left atrium of a heart. The prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic mitral valve assumes its biased expanded configuration. In some embodiments, actuation wires are used to assist in the reversion of the outer frame. The prosthetic mitral valve is then positioned within a mitral annulus of the heart.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 29, 2020
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Zachary Vidlund, Robert Vidlund, Igor Kovalsky, William Peckels, Michael Evans, Chad Perrin, John F. Otte, Son Mai