Patents by Inventor Mark Crockett

Mark Crockett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10321430
    Abstract: A method, apparatus, computer program, and data structure relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: June 11, 2019
    Assignee: Focal Point Positioning Ltd.
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett, Peter Duffett-Smith
  • Publication number: 20190128673
    Abstract: A method and system for combining data obtained by sensors, having particular application in the field of navigation systems, are disclosed. The techniques provide significant improvement over state-of-the-art Markovian methods that use statistical noise filters such as Kalman filters to filter data by comparing instantaneous data with the corresponding instantaneous estimates from a model. In contrast, the techniques disclosed herein use multiple time periods of various lengths to process multiple sensor data streams, in order to combine sensor measurements with motion models at a given time epoch with greater confidence and accuracy than is possible with traditional “single epoch” methods. The techniques provide particular benefit when the first and/or second sensors are low-cost sensors (for example as seen in smart phones) which are typically of low quality and have large inherent biases.
    Type: Application
    Filed: February 12, 2018
    Publication date: May 2, 2019
    Inventors: Ramsey Faragher, Mark Crockett, Peter Duffett-Smith
  • Publication number: 20190086553
    Abstract: A method, apparatus, computer program, data structure, signal relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Application
    Filed: March 21, 2007
    Publication date: March 21, 2019
    Inventors: Ramsey Faragher, Nicolas Couronneau, Mark Crockett, Peter Duffett-Smith
  • Publication number: 20190011569
    Abstract: A positioning device (4) is disclosed comprising at least one antenna (14, 16) for receiving ranging signals, such as GNSS signals. The device comprises a local oscillator (18) for providing a local frequency or phase reference and an inertial sensor (22) for measuring a movement of the device. A processor (36) is provided for performing calculations. The device can receive a first reference signal at a known or predictable frequency or phase. A local oscillator offset determination module (26) is provided to calculate an offset to the received frequency or the received phase based on the movement of the receiver in the direction of the first reference source. A local signal generator (28) can then use the local frequency or phase reference from the local oscillator (18), and the offset calculated by the local oscillator offset determination module (26), to provide a local signal using a local signal generator (28).
    Type: Application
    Filed: November 27, 2017
    Publication date: January 10, 2019
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett, Peter Duffett-Smith
  • Publication number: 20180173246
    Abstract: Disclosed is a method and apparatus for physically coupling together a first aircraft and a second aircraft, for example for the purpose of performing air-to-air refueling. The first aircraft is an aircraft in flight. The second aircraft is an aircraft in flight. The method comprises: sending, from a transmitter located on the first aircraft, an electromagnetic signal; receiving, by a receiver located on the second aircraft, the signal; and controlling, by one or more processors, using the signal received by the second aircraft, at least one of the first and second aircraft such that the first and second aircraft are in a predetermined configuration in which the first and second aircraft are physically coupled together, for example attached together.
    Type: Application
    Filed: May 9, 2016
    Publication date: June 21, 2018
    Applicant: BAE Systems plc
    Inventors: Robert Mark Crockett, Gary Alexander Cousins
  • Patent number: 9780829
    Abstract: A method, apparatus, computer program, data structure, signal relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 3, 2017
    Assignee: Focal Point Positioning Ltd.
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett
  • Publication number: 20170279598
    Abstract: A method, apparatus, computer program, and data structure relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 28, 2017
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett, Peter Duffett-Smith
  • Publication number: 20170279486
    Abstract: A method, apparatus, computer program, data structure, signal relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 28, 2017
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett
  • Patent number: 8656953
    Abstract: A method of preventing a mass flow controller from participating in crosstalk in an array of mass flow controllers is described. The method includes sensing and providing a signal indicative of a fluid pressure inside of a mass flow controller with a pressure sensor contained within the mass flow controller, determining a response of a control valve to a rapid pressure perturbation at the inlet of the mass flow controller using the signal indicative of the fluid pressure to avoid overcompensation for the rapid pressure perturbation, and adjusting a control valve contained within the mass flow controller downstream of the pressure sensor, based on the determined response, so that the mass flow controller avoids overcompensating for the rapid pressure perturbation. The pressure sensor is positioned such that the pressure sensor is sensitive to rapid pressure perturbations at the inlet of the mass flow controller.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Balarabe Nuhu Mohammed, Philip Barros, Raul A. Martin, Mark A. Crockett, Eric S. Sklar
  • Patent number: 8127783
    Abstract: A method of preventing a mass flow controller from participating in crosstalk in an array of mass flow controllers is described. The method includes sensing and providing a signal indicative of a fluid pressure inside of a mass flow controller with a pressure sensor contained within the mass flow controller, determining a response of a control valve to a rapid pressure perturbation at the inlet of the mass flow controller using the signal indicative of the fluid pressure to avoid overcompensation for the rapid pressure perturbation, and adjusting a control valve contained within the mass flow controller downstream of the pressure sensor, based on the determined response, so that the mass flow controller avoids overcompensating for the rapid pressure perturbation. The pressure sensor is positioned such that the pressure sensor is sensitive to rapid pressure perturbations at the inlet of the mass flow controller.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 6, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mohammed Nuhu Balarabe, Philip Barros, Raul A. Martin, Mark A. Crockett, Eric S. Sklar
  • Patent number: 8020750
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention also includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and may be partially integrated or fully integrated into a processing chamber which also includes diffusion bonded layers.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: September 20, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 8017028
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention also includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: September 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7984891
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The fluid delivery system includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Michael J. DeChellis, Chris Melcer, Erica R. Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7850786
    Abstract: Described is a space-conserving integrated fluid delivery system particularly useful for gas distribution in semiconductor processing equipment. The system includes integrated fluid flow network architecture, and may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded. Subsequent to diffusion bonding, a stainless steel diffusion bonded part may advantageously be treated to enhance corrosion resistance using a series of steps designed to bring more chromium to the surface of the steel.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: December 14, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7798388
    Abstract: The present invention relates to a method of diffusion bonding of steel and steel alloys, to fabricate a fluid delivery system of the kind which would be useful in semiconductor processing and in other applications which require high purity fluid handling.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Patent number: 7559527
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The fluid delivery system includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Publication number: 20090072009
    Abstract: The present invention relates to diffusion bonding of patterned sheets to form a fluid flow handling structure, and to a method of preventing bonding between a load distribution block and a plate set of stacked sheets during the diffusion bonding process.
    Type: Application
    Filed: October 21, 2008
    Publication date: March 19, 2009
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Publication number: 20090057375
    Abstract: The present invention relates to a method of diffusion bonding sheets of patterned material to fabricate a fluid delivery system; and particularly relates to a method of improving the interior surface roughness of fluid flow conduits formed within the diffusion bonded fluid delivery system structure.
    Type: Application
    Filed: October 21, 2008
    Publication date: March 5, 2009
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Publication number: 20090039057
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention also includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Application
    Filed: October 14, 2008
    Publication date: February 12, 2009
    Inventors: Mark Crockett, John W. Lane, Micahel J. DeChellis, Chris Melcer, Erica R. Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Publication number: 20080296351
    Abstract: The present invention relates to a method of diffusion bonding of steel and steel alloys, to fabricate a fluid delivery system of the kind which would be useful in semiconductor processing and in other applications which require high purity fluid handling.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath