Patents by Inventor Mark D. Adams

Mark D. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6423507
    Abstract: Disclosed is a human osteoclast-derived cathepsin (Cathepsin O) polypeptide and DNA(RNA) encoding such cathepsin O polypeptides. Also provided is a procedure for producing such polypeptide by recombinant techniques. The present invention also discloses antibodies, antagonists and inhibitors of such polypeptide which may be used to prevent the action of such polypeptide and therefore may be used therapeutically to treat bone diseases such as osteoporosis and cancers, such as tumor metastases.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: July 23, 2002
    Assignees: Human Genome Sciences, Inc., Smithkline Beecham Corporation
    Inventors: Gregg A. Hastings, Mark D. Adams, Claire M. Fraser, Norman H. Lee, Ewen F. Kirkness, Judith A. Blake, Lisa M. Fitzgerald, Fred H. Drake, Maxine Gowan
  • Patent number: 6416984
    Abstract: The invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins and a procedure for producing such proteins by recombinant techniques. One of the human DNA repair proteins, hMLH1, has been mapped to chromosome 3 while hMLH2 has been mapped to chromosome 2 and hMLH3 has been mapped to chromosome 7. The polynucleotide sequences of the DNA repair proteins may be used for therapeutic and diagnostic treatments of a hereditary susceptibility to cancer.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 9, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: William A. Haseltine, Steven M. Ruben, Ying-Fei Wei, Mark D. Adams, Robert D. Fleischmann, Claire M. Fraser, Rebecca A. Fuldner, Ewen F. Kirkness, Craig A. Rosen
  • Publication number: 20020086365
    Abstract: Human G-protein Coupled receptor polypeptides and DNA (RNA) encoding such polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptides for identifying antagonists and agonists to such polypeptides and methods of using the agonists and antagonists therapeutically to treat conditions related to the underexpression and overexpression of the receptor polypeptides, respectively. Also disclosed are diagnostic methods for detecting a mutation in the receptor nucleic acid sequences and detecting a level of the soluble form of the receptors in a sample derived from a host.
    Type: Application
    Filed: December 10, 2001
    Publication date: July 4, 2002
    Applicant: Human Genome Sciences, Inc.
    Inventors: Yi Li, Mark D. Adams
  • Publication number: 20020081695
    Abstract: A human HPRT-2 polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for the treatment of nephrolithiasis, anemia, precocious gout, kidney stones, Lesch-Nyhan syndrome, renal failure and uricaciduria. Antagonists against such polypeptides and their use as a therapeutic to treat disorders associated with excessive purine synthesis are also disclosed. Diagnostic assays for identifying mutations in nucleic acid sequences encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention are also disclosed.
    Type: Application
    Filed: July 12, 2001
    Publication date: June 27, 2002
    Applicant: Human Genome Sciences, Inc.
    Inventors: Daniel P. Bednarik, Craig A. Rosen, Mark D. Adams
  • Publication number: 20020072107
    Abstract: Disclosed is a human osteoclast-derived cathepsin (Cathepsin O) polypeptide and DNA(RNA) encoding such cathepsin O polypeptides. Also provided is a procedure for producing such polypeptide by recombinant techniques. The present invention also discloses antibodies, antagonists and inhibitors of such polypeptide which may be used to prevent the action of such polypeptide and therefore may be used therapeutically to treat bone diseases such as osteoporosis and cancers, such as tumor metastases.
    Type: Application
    Filed: September 18, 2001
    Publication date: June 13, 2002
    Applicant: Human Genome Sciences, Inc.
    Inventors: Gregg A. Hastings, Mark D. Adams, Claire M. Fraser, Norman H. Lee, Ewen F. Kirkness, Judith A. Blake, Lisa M. Fitzgerald, Fred H. Drake, Maxine Gowan
  • Publication number: 20020065393
    Abstract: A human HPRT-2 polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for the treatment of nephrolithiasis, anemia, precocious gout, kidney stones, Lesch-Nyhan syndrome, renal failure and uricaciduria. Antagonists against such polypeptides and their use as a therapeutic to treat disorders associated with excessive purine synthesis are also disclosed. Diagnostic assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention are also disclosed.
    Type: Application
    Filed: November 12, 1998
    Publication date: May 30, 2002
    Inventors: DANIEL P. BEDNARIK, CRAIG A. ROSEN, MARK D. ADAMS
  • Publication number: 20020061527
    Abstract: Disclosed is a human is a hTopI-&agr; polypeptide and DNA (RNA) encoding such hTopI-&agr; polypeptide. Also provided is a procedure for producing such polypeptide by recombinant techniques and antibodies and antagonists against such polypeptide. Also provided are methods of using the antibodies and antagonist inhibitors to inhibit the action of hTopI-&agr; for therapeutic purposes such as an antitumor agent, to detect an autoimmune disease, or retroviral infections and to treat adenocarcinoma of the colon. Diagnostic methods for detecting mutations in the coding sequence and alterations in the concentration of the polypeptides in a sample derived from a host are also disclosed.
    Type: Application
    Filed: June 4, 2001
    Publication date: May 23, 2002
    Inventors: Ying-Fei Wei, Mark D. Adams, Robert D. Fleischmann
  • Patent number: 6391589
    Abstract: Human chemokine Beta-10 polypeptides and DNA (RNA) encoding such chemokine polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemokine polypeptides for the treatment of leukemia, tumors, chronic infections, autoimmune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemokine polypeptides and their use as a therapeutic to treat rheumatoid arthritis, autoimmune and chronic inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever and bone marrow failure are also disclosed.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: May 21, 2002
    Assignees: Human Genome Sciences, Inc., SmithKline Beecham, Corp.
    Inventors: Henrik S. Olsen, Haodong Li, Mark D. Adams, Solange H. L. Gentz, Ralph Alderson, Yuling Li, David Parmelee, John R. White, Edward R. Appelbaum
  • Patent number: 6387682
    Abstract: Disclosed is a human osteoclast-derived cathepsin (Cathepsin O) polypeptide and DNA(RNA) encoding such cathepsin O polypeptides. Also provided is a procedure for producing such polypeptide by recombinant techniques. The present invention also discloses antibodies, antagonists and inhibitors of such polypeptide which may be used to prevent the action of such polypeptide and therefore may be used therapeutically to treat bone diseases such as osteoporosis and cancers, such as tumor metastases.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: May 14, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Gregg A. Hastings, Mark D. Adams, Claire M. Fraser, Norman H. Lee, Ewen F. Kirkness, Judith A. Blake, Lisa M. Fitzgerald, Fred H. Drake, Maxine Gowan
  • Patent number: 6383737
    Abstract: A human oxalyl-CoA decarboxylase polypeptide and DNA(RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques and for producing an antibody against such polypeptide are disclosed. Also disclosed is a combination of the polypeptide of the present invention and a suitable pharmaceutical carrier for providing a therapeutically effective amount of the polypeptide for the treatment of urolithiasis and hyperoxaluria. Also disclosed are assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: May 7, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Henrik S. Olsen, Timothy A. Coleman, Mark D. Adams
  • Patent number: 6383793
    Abstract: Disclosed is a human osteoclast-derived cathepsin (Cathepsin O) polypeptide and DNA(RNA) encoding such cathepsin O polypeptides. Also provided is a procedure for producing such polypeptide by recombinant techniques. The present invention also discloses antibodies, antagonists and inhibitors of such polypeptide which may be used to prevent the action of such polypeptide and therefore may be used therapeutically to treat bone diseases such as osteoporosis and cancers, such as tumor metastases.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: May 7, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Gregg A. Hastings, Mark D. Adams, Claire M. Fraser, Norman H. Lee, Ewen F. Kirkness, Judith A. Blake, Lisa M. Fitzgerald, Fred H. Drake, Maxine Gowan
  • Patent number: 6380369
    Abstract: The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins. The DNA repair proteins which may be produced by recombinant DNA techniques. One of the human DNA repair proteins, hMLH1, has been mapped to chromosome 3 while hMLH2 has been mapped to chromosome 2 and hMLH3 has been mapped to chromosome 7. The polynucleotide sequences of the DNA repair proteins may be used for diagnosis of a hereditary susceptibility to cancer.
    Type: Grant
    Filed: August 23, 1994
    Date of Patent: April 30, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Mark D. Adams, Robert D. Fleischmann, Claire M. Fraser, Rebecca A. Fuldner, Ewen F. Kirkness, William A. Haseltine, Craig A. Rosen, Steve Ruben, Ying-Fei Wei
  • Publication number: 20020049304
    Abstract: A human Small CCN-Like Growth Factor polypeptide (SCGF) and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for wound healing or tissue regeneration, stimulating implant fixation and angiogenesis. Antagonist against such polypeptides and their use as a therapeutic to treat atherosclerosis, tumors and scarring are also disclosed. Diagnostic assays for identifying mutations in SCGF nucleic acid sequences and altered levels of the SCGF polypeptide are also disclosed.
    Type: Application
    Filed: May 14, 2001
    Publication date: April 25, 2002
    Inventors: Gregg A. Hastings, Mark D. Adams
  • Patent number: 6355450
    Abstract: The present invention provides the sequencing of the entire genome of Haemophilus influenzae Rd, SEQ ID NO: 1. The present invention further provides the sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use. In addition to the entire genomic sequence, the present invention identifies over 1700 protein encoding fragments of the genome and identifies, by position relative to a unique Not I restriction endonuclease site, any regulatory elements which modulate the expression of the protein encoding fragments of the Haemophilus genome.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 12, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Robert D. Fleischmann, Mark D. Adams, Owen White, Hamilton O. Smith, J. Craig Venter
  • Publication number: 20020026044
    Abstract: Human chemokine polypeptides and DNA (RNA) encoding such chemokine polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemokine polypeptides for the treatment of leukemia, tumors, chronic infections, autoimmune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemokine polypeptides and their use as a therapeutic to treat rheumatoid arthritis, autoimmune and chronic inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever and bone marrow failure are also disclosed. Diagnostic assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention are also disclosed.
    Type: Application
    Filed: March 3, 1999
    Publication date: February 28, 2002
    Inventors: HAODONG LI, MARK D. ADAMS
  • Patent number: 6346246
    Abstract: Disclosed is human haemopoietic maturation factor polypeptides and DNA (RNA) encoding such haemopoietic maturation factor polypeptides. Also provided is a procedure for producing such polypeptides by recombinant techniques and the use of such polypeptides for treating leukemia, auto-immune diseases and blood related disorders. Antagonists against such polypeptides and their use as a therapeutic to prevent expansion of T-cell populations is also disclosed. Diagnostic assays are also disclosed which detect the presence of mutations in the haemopoietic maturation factor nucleic acid sequences and altered levels of the protein.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: February 12, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Ewen F. Kirkness, Mark D. Adams, Henrik S. Olsen, Craig A. Rosen
  • Patent number: 6265543
    Abstract: The present invention discloses transforming growth factor alpha HI polypeptides and polynucleotides encoding such polypeptides. Also provided is a procedure for producing such polypeptides by recombinant techniques and therapeutic uses of the polypeptides which include stimulating wound healing, treating neurological disorders, treating ocular disorders, treating kidney and liver disorders and stimulating embryogenesis and angiogenesis. Also disclosed are antagonists against such polypeptide and their use as a therapeutic to treat neoplasia. Also disclosed are diagnostic assays for detecting altered levels of the polypeptide of the present invention and mutations in the nucleic acid sequences which encode the polypeptides of the present invention.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: July 24, 2001
    Assignee: Human Genome Sciences, Inc.
    Inventors: Paul S. Meissner, Rebecca A. Fuldner, Ying Fei-Wei, Mark D. Adams
  • Patent number: 6255077
    Abstract: Disclosed is a human is a hTopI-&agr; polypeptide and DNA (RNA) encoding such hTopI-&agr; polypeptide. Also provided is a procedure for producing such polypeptide by recombinant techniques and antibodies and antagonists against such polypeptide. Also provided are methods of using the antibodies and antagonist inhibitors to inhibit the action of hTopI-&agr; for therapeutic purposes such as an antitumor agent, to detect an autoimmune disease, or retroviral infections and to treat adenocarcinoma of the colon. Diagnostic methods for detecting mutations in the coding sequence and alterations in the concentration of the polypeptides in a sample derived from a host are also disclosed.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: July 3, 2001
    Assignee: Human Genome Sciences, Inc.
    Inventors: Ying-Fei Wei, Mark D. Adams, Robert D. Fleischmann
  • Patent number: 6251648
    Abstract: A human DNase polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for preventing and/or treating bronchopulmonary conditions. Diagnostic assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention are also disclosed.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: June 26, 2001
    Assignee: Human Genome Sciences, Inc.
    Inventors: Craig Rosen, Steven M. Ruben, Mark D. Adams
  • Publication number: 20010003743
    Abstract: A human oxalyl-CoA decarboxylase polypeptide and DNA(RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques and for producing an antibody against such polypeptide are disclosed. Also disclosed is a combination of the polypeptide of the present invention and a suitable pharmaceutical carrier for providing a therapeutically effective amount of the polypeptide for the treatment of urolithiasis and hyperoxaluria. Also disclosed are assays for identifying mutations in nucleic acid sequence encoding a polypeptide of the present invention and for detecting altered levels of the polypeptide of the present invention.
    Type: Application
    Filed: December 8, 2000
    Publication date: June 14, 2001
    Applicant: Human Genome Sciences, Inc.
    Inventors: Henrik S. Olsen, Timothy A. Coleman, Mark D. Adams