Patents by Inventor Mark D. Elpers

Mark D. Elpers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080240214
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; a transmitter; a processor coupled to the transmitter, wherein the processor outputs data for transmission to the transmitter, wherein the processor applies an inverse Fourier transform algorithm to the data provided to the transmitter; a controller programmed to instruct the transmitter to transmit a predetermined identifier on at least one of the spectrally overlapping carrier signals, the predetermined identifier identifying to a first remote unit a range of the plurality of spectrally overlapping carrier signals for the first remote unit to receive control information.
    Type: Application
    Filed: October 29, 2007
    Publication date: October 2, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20080225690
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Application
    Filed: October 29, 2007
    Publication date: September 18, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20080225692
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises:a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor programmed to encode upstream information using a forward error correction algorithm based on forward error correction parameters received by the receiver.
    Type: Application
    Filed: October 29, 2007
    Publication date: September 18, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiappetta, Scott Sarnikowski
  • Publication number: 20080225691
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remotes, the carrier signals are modulated using an inverse Fourier transform; a transmitter; a processor coupled to the transmitter, the processor outputs data for transmission to the transmitter, the processor applies an inverse Fourier transform to the data provided to the transmitter; a controller programmed to instruct the transmitter to transmit timing adjustments to the at least two of the plurality of remotes, the timing adjustments instruct the at least two of the plurality of remotes to adjust transmission timing so that transmitted symbols associated with frames of a predetermined multiframe structure are received in sequence from the at least two of the plurality of remotes based on the structure.
    Type: Application
    Filed: October 29, 2007
    Publication date: September 18, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20080123514
    Abstract: Methods for multiframe alignment are provided. In one embodiment, a method comprises sharing upstream bandwidth capacity among a plurality of remote units in a manner that permits at least two of the remote units to transmit to a host at any one time using the upstream bandwidth capacity, the upstream bandwidth capacity provided by using orthogonal frequency division multiplexing with a plurality of tones; and causing at least one remote unit to adjust the timing of symbols transmitted on at least one of the plurality of tones in order to improve an alignment of multiframes received at the host.
    Type: Application
    Filed: April 17, 2007
    Publication date: May 29, 2008
    Applicant: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: 7123592
    Abstract: A head end is provided. The head end includes at least one modern for communicating with service units over a transmission bandwidth, the transmission bandwidth being divided into a number of subbands, each subband including a plurality of payload channels and at least one control channel and a control circuit, communicatively coupled with the at least one modem, that assigns each service unit to a subband such that the service units are substantially evenly distributed over the subbands.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: October 17, 2006
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: 7069577
    Abstract: The communication system includes a hybride fiber/coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber/coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber/coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: June 27, 2006
    Assignee: SDC Telecommunications, Inc.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: 6816562
    Abstract: A logic array is provided, which includes a plurality of unidirectional segmented buses connecting a plurality of processing elements, called silicon objects, within an integrated circuit. The bus includes a string of unidirectional bus segments. Each silicon object includes a bus input coupled to one of the bus segments in the first bus, and a bus output coupled to a next subsequent one of the bus segments in the first bus. A landing circuit is coupled to the bus input for receiving digital information from the bus input. A function-specific logic block is coupled to an output of the landing circuit and has a result output. Each silicon object further includes a multiplexer having first and second inputs coupled to the bus input and the result output, respectively, and having an output coupled to the bus output.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: November 9, 2004
    Assignee: MathStar, Inc.
    Inventors: Kevin E. Atkinson, Timothy H. Dwyer, Ryan C. Johnson, Mark D. Elpers, Dirk R. Helgemo
  • Publication number: 20040130346
    Abstract: A logic array is provided, which includes a plurality of unidirectional segmented buses connecting a plurality of processing elements, called silicon objects, within an integrated circuit. The bus includes a string of unidirectional bus segments. Each silicon object includes a bus input coupled to one of the bus segments in the first bus, and a bus output coupled to a next subsequent one of the bus segments in the first bus. A landing circuit is coupled to the bus input for receiving digital information from the bus input. A function-specific logic block is coupled to an output of the landing circuit and has a result output. Each silicon object further includes a multiplexer having first and second inputs coupled to the bus input and the result output, respectively, and having an output coupled to the bus output.
    Type: Application
    Filed: January 7, 2003
    Publication date: July 8, 2004
    Inventors: Kevin E. Atkinson, Timothy H. Dwyer, Ryan C. Johnson, Mark D. Elpers, Dirk R. Helgemo
  • Publication number: 20020116719
    Abstract: A method for controlling a plurality of service units in a telecommunications system with a multi-carrier transmission scheme is provided. Specifically, in one embodiment, the method includes broadcasting control signals for the service units over a plurality of control channels distributed in a number of subbands of a frequency bandwidth. The method further includes identifying the service unit to use the control signal with an identifier.
    Type: Application
    Filed: January 11, 2002
    Publication date: August 22, 2002
    Applicant: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 6434583
    Abstract: A apparatus for providing a Fast Fourier Transform (FFT) and an inverse FFT is provided. The apparatus comprises a radix-N core. The radix-N core includes at least N multipliers. The radix-N core also includes a twiddle-factor lookup table that stores complex twiddle-factors. The twiddle-factor lookup table is coupled to one input of each of the multipliers. The radix-N core also includes a conversion random access memory (RAM) that stores transform points. The conversion RAM is coupled to another input of each of the multipliers. The radix-N core also includes an array of at least N-times-N adder-subtracter-accumulators.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: August 13, 2002
    Assignee: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20020106060
    Abstract: A multicarrier transmitting modem is described.
    Type: Application
    Filed: January 11, 2002
    Publication date: August 8, 2002
    Applicant: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Krischt, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20020105950
    Abstract: A method of computer data transmission over a telecommunications network having a head end connected to a plurality of service units is provided. The method includes receiving a request for transmitting computer data over the network from a service unit, retrieving provisioning information for the service unit, and selectively assigning one or more data channels based on the provisioning information to transmit the computer data over the network to provide a data path with substantially constant data transfer bandwidth between a head end and the service unit.
    Type: Application
    Filed: January 11, 2002
    Publication date: August 8, 2002
    Applicant: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20020015477
    Abstract: The communication system includes a hybride fiber/coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber/coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber/coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information.
    Type: Application
    Filed: July 11, 2001
    Publication date: February 7, 2002
    Applicant: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Publication number: 20020012421
    Abstract: The communication system includes a hybride fiber/coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber/coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber/coax distribution network. The head end includes head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 31, 2002
    Applicant: ADC Telecomunications, Inc.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: 6334219
    Abstract: A method for monitoring at least one telephony communication n-bit channel, wherein one of the bits is a parity bit, includes sampling the parity bit of the n-bit channel. A probable bit error rate is derived from the sampling of the parity bit. The probable bit error rate can be compared to a pre-determined bit error rate value to determine if the at least one telephony communication n-bit channel is corrupted. If the at least one telephony communication n-bit channel is corrupted, the at least one telephony communication n-bit channel is re-allocated to an uncorrupted and unallocated telephony communication n-bit channel. Further, at least one unallocated telephony communication channel can be periodically monitored and error data accumulated to indicate the quality thereof.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: December 25, 2001
    Assignee: ADC Telecommunications Inc.
    Inventors: Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 6282683
    Abstract: The communication system includes a hybrid fiber/coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber/coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber/coax distribution network. The head end includes a head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: August 28, 2001
    Assignee: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 6279158
    Abstract: The communication system includes a hybrid fiber/coax distribution network. A head end provides for downstream transmission of telephony and control data in a first frequency bandwidth over the hybrid fiber/coax distribution network and reception of upstream telephony and control data in a second frequency bandwidth over the hybrid fiber/coax distribution network. The head end includes a head end multicarrier modem for modulating at least downstream telephony information on a plurality of orthogonal carriers in the first frequency bandwidth and demodulating at least upstream telephony information modulated on a plurality of orthogonal carriers in the second frequency bandwidth. The head end further includes a controller operatively connected to the head end multicarrier modem for controlling transmission of the downstream telephony information and downstream control data and for controlling receipt of the upstream control data and upstream telephony information.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: August 21, 2001
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: 5528579
    Abstract: A telecommunications system includes an added bit signalling method and apparatus for conveying signalling information between a head end and multiple remote ends connected over a passive distribution network. In accordance with the present invention, an added bit having an identifiable data sequence patterned thereon is appended to each channel within a succession of frames. In the system, the modified channels are broken up, routed reconstructed into a modified framing format and transmitted to their respective destination remote units. Because individual channels within a given frame are broken up and reconstructed into modified frames with channels from other frames, the framing information formerly identified by the framing bit is lost. The present invention therefore appends an added-bit sequence to each channel such that each channel sample carries its own multiframe and alignment information.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: June 18, 1996
    Assignee: ADC Telecommunications, Inc.
    Inventors: Mark S. Wadman, Adam Opoczynski, Mark D. Elpers
  • Patent number: 5519719
    Abstract: A universal pattern generator generates a digital signal pattern. The generator includes a user programmable device for specifying a repeatable digital signal pattern. The programmable device allows for the selection of a framing structure having a number of channels. The programmable device also has input means for inputting data into the channels of the framing structure. A data set representing the repeatable digital signal pattern is generated. The data set is held in memory. A transmitter responsive to the data set held in memory repeatably transmits the repeatable digital signal pattern represented by said data set.
    Type: Grant
    Filed: December 19, 1991
    Date of Patent: May 21, 1996
    Assignee: ADC Telecommunications, Inc.
    Inventors: Mark D. Elpers, John C. Lanphear