Patents by Inventor Mark D. Lowenthal

Mark D. Lowenthal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109780
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Application
    Filed: May 1, 2023
    Publication date: April 4, 2024
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Publication number: 20230207836
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Application
    Filed: November 1, 2022
    Publication date: June 29, 2023
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Patent number: 11673811
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: June 13, 2023
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 11502311
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: November 15, 2022
    Assignee: PRINTED ENERGY Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Publication number: 20220041456
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Application
    Filed: July 16, 2021
    Publication date: February 10, 2022
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 11066306
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: July 20, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 10961408
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: March 30, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Publication number: 20200350598
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 5, 2020
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Patent number: 10755060
    Abstract: In one embodiment, a printed security mark comprises a random arrangement of printed LEDs and a wavelength conversion layer. During fabrication of the mark, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The emitted spectrum vs. intensity and persistence of the wavelength conversion layer is also encoded in the first code. The mark may be on a credit card, casino chip, banknote, passport, etc. to be authenticated. For authenticating the mark, the LEDs are energized and the dot pattern, spectrum vs. intensity, and persistence are converted into a code and compared to the first code stored in the database. If there is a match, the mark is authenticated.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: August 25, 2020
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Patent number: 10658679
    Abstract: A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 19, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Alexandra E. Hartman, Mark D. Lowenthal, William J. Ray
  • Patent number: 10516073
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 24, 2019
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 10482364
    Abstract: In one embodiment, an authentication area on a portable object comprises a random arrangement of printed LEDs and a wavelength conversion layer. The object to be authenticated may be a credit card, casino chip, or other object. When the LEDs are energized during authentication of the object, the emitted spectrum and/or persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated. The LED power may be remotely inductively coupled and may flash the LEDs, while the wavelength conversion layer emission slowly decays during its optical detection. The flash of blue LED light may be emitted from the edges of the object, which may act as a light guide, for optical feedback to the user that the object is being authenticated.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 19, 2019
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric W. Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20190272456
    Abstract: In one embodiment, an authentication area on a portable object comprises a random arrangement of printed LEDs and a wavelength conversion layer. The object to be authenticated may be a credit card, casino chip, or other object. When the LEDs are energized during authentication of the object, the emitted spectrum and/or persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated. The LED power may be remotely inductively coupled and may flash the LEDs, while the wavelength conversion layer emission slowly decays during its optical detection. The flash of blue LED light may be emitted from the edges of the object, which may act as a light guide, for optical feedback to the user that the object is being authenticated.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 5, 2019
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric W. Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Patent number: 10402610
    Abstract: In one embodiment, a printed LED area comprises a random arrangement of printed LEDs and a wavelength conversion layer. The LED area is embedded in an object to be authenticated, such as a credit card or a casino chip. The object may include a light guide for enabling the generated light to be emitted from any portion of the object. In one embodiment, when the LEDs are energized during authentication of the object, the existence of light emitted by the object is sufficient authentication and/or provides feedback to the user that the object is being detected. For added security, the emitted spectrum vs. intensity and persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: September 3, 2019
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20190264055
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Application
    Filed: May 7, 2019
    Publication date: August 29, 2019
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 10329444
    Abstract: A conductive ink may include a nickel component, a polycarboxylic acid component, and a polyol component, the polycarboxylic acid component and the polyol component being reactable to form a polyester component. The polyester component may be formed in situ in the conductive ink from a polyol component and a polycarboxylic acid component. The conductive ink may include a carbon component. The conductive ink may include an additive component. The conductive ink may include nickel flakes, graphene flakes, glutaric acid, and ethylene glycol. The conductive ink may be printed (e.g., screen printed) on a substrate and cured to form a conductive film. A conductive film may include a nickel component and a polyester component.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: June 25, 2019
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Alexandra E. Hartman, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Publication number: 20190185329
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Application
    Filed: February 21, 2019
    Publication date: June 20, 2019
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Patent number: 10221071
    Abstract: A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: March 5, 2019
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, John G. Gustafson, Mark D. Lowenthal, William J. Ray
  • Publication number: 20180357455
    Abstract: In one embodiment, a printed security mark comprises a random arrangement of printed LEDs and a wavelength conversion layer. During fabrication of the mark, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The emitted spectrum vs. intensity and persistence of the wavelength conversion layer is also encoded in the first code. The mark may be on a credit card, casino chip, banknote, passport, etc. to be authenticated. For authenticating the mark, the LEDs are energized and the dot pattern, spectrum vs. intensity, and persistence are converted into a code and compared to the first code stored in the database. If there is a match, the mark is authenticated.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 13, 2018
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20180357522
    Abstract: In one embodiment, a printed LED area comprises a random arrangement of printed LEDs and a wavelength conversion layer. The LED area is embedded in an object to be authenticated, such as a credit card or a casino chip. The object may include a light guide for enabling the generated light to be emitted from any portion of the object. In one embodiment, when the LEDs are energized during authentication of the object, the existence of light emitted by the object is sufficient authentication and/or provides feedback to the user that the object is being detected. For added security, the emitted spectrum vs. intensity and persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 13, 2018
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray