Patents by Inventor Mark D. Ray

Mark D. Ray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030046025
    Abstract: A wide field scanning laser obstacle awareness system (LOAS) comprises: a plurality of first optical elements configured to direct a portion of a pulsed laser beam generated by a light source to a light detector, and to direct the pulsed laser beam to a beam expander wherein the pulsed laser beam is expanded; and at least one rotationally operated second optical element for directing the expanded pulsed laser beam from the system with a predetermined pattern scanned azimuthally over a wide field, the at least one rotationally operated second optical element also for receiving reflections of the pulsed laser beam from at least one object along the predetermined pattern and directing them to the laser beam expander wherein the laser beam reflections are focused; the plurality of first optical elements also configured to direct the focused laser beam reflections to the light detector for use in determining the location of the at least one object.
    Type: Application
    Filed: September 4, 2001
    Publication date: March 6, 2003
    Inventors: James R. Jamieson, Mark D. Ray
  • Publication number: 20030043058
    Abstract: A distributed laser based obstacle awareness system for use on-board an aircraft comprises: a plurality of obstacle detecting sensors disposable at a corresponding plurality of locations of the aircraft for emitting laser energy from the aircraft into a predetermined region of space and for receiving return laser energy from an obstacle in the predetermined region of space; a laser source for emitting a laser beam along an optical path; and a plurality of bistatic optical channels. Each channel comprises a plurality of transmission fiber optic cables and at least one receiver fiber optic cable and extends from the laser source to a corresponding obstacle detecting sensor of the plurality to direct the laser beam from the optical path to its corresponding obstacle detecting sensor of the plurality for emission into the corresponding predetermined region of space; and a light detector.
    Type: Application
    Filed: March 28, 2002
    Publication date: March 6, 2003
    Inventors: James R. Jamieson, Mark D. Ray
  • Publication number: 20030043363
    Abstract: A combined system of a LOAS and a LIDAR system comprises: a LIDAR arrangement of optical elements for generating a first coherent beam of light at a first predetermined wavelength; a LOAS arrangement of optical elements for generating a second coherent beam of light at a second predetermined wavelength; a dichroic filter optical element for directing the first and second coherent beams of light substantially on a first common optical path towards an aperture of a beam expander; at least one output optical element which directs both of the expanded first and second coherent beams of light from the system, the at least one output optical element also for receiving and directing reflections of the first and second coherent beams of light to the beam expander wherein the beam reflections are collected; and wherein the dichroic filter optical element separates and directs the collected light corresponding to the first coherent beam back to the LIDAR arrangement of optical elements for use in determining flow veloc
    Type: Application
    Filed: September 4, 2001
    Publication date: March 6, 2003
    Inventors: James R. Jamieson, Mark D. Ray, Clinton T. Meneely
  • Publication number: 20030043364
    Abstract: A LIDAR system for measuring flow velocity in three axes comprises: a LIDAR arrangement of optical elements for generating a coherent beam of light and directing the coherent beam of light by at least one rotationally operated optical element from the system with a predetermined pattern, the at least one rotationally operated optical element also for receiving reflections from particles along the predetermined pattern and directing the beam reflections to a light detector which converts the beam reflections into representative electrical signals; and a processor for detecting bursts from the electrical signals which are representative of light beam reflections from at least one particle substantially at a corresponding position along the predetermined pattern, and for computing a Doppler frequency for each of a selected plurality of detected bursts from the signal content thereof.
    Type: Application
    Filed: September 4, 2001
    Publication date: March 6, 2003
    Inventors: James R. Jamieson, Mark D. Ray, Clinton T. Meneely