Patents by Inventor Mark DeFranza

Mark DeFranza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979002
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: May 7, 2024
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Publication number: 20210126435
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Application
    Filed: November 9, 2020
    Publication date: April 29, 2021
    Applicant: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Patent number: 10833482
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 10, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Patent number: 10763640
    Abstract: Apparatus include a conductive block including a base surface and a plurality of parallel stepped surfaces opposite the base surface and defining respective mounting surfaces situated to receive respective laser diodes having respective thermal paths defining a common thermal path distance from the mounting surfaces to the base surface, and a two-phase cooling unit including a coupling surface attached to the base surface of the conductive block and wherein the two-phase cooling unit is situated to conduct heat generated through the emission of laser beams from the laser diodes along the thermal paths.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: September 1, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Manoj Kanskar, Mark DeFranza
  • Publication number: 20190252863
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Applicant: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Publication number: 20180309264
    Abstract: Apparatus include a conductive block including a base surface and a plurality of parallel stepped surfaces opposite the base surface and defining respective mounting surfaces situated to receive respective laser diodes having respective thermal paths defining a common thermal path distance from the mounting surfaces to the base surface, and a two-phase cooling unit including a coupling surface attached to the base surface of the conductive block and wherein the two-phase cooling unit is situated to conduct heat generated through the emission of laser beams from the laser diodes along the thermal paths.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Applicant: nLIGHT, Inc.
    Inventors: Manoj Kanskar, Mark DeFranza
  • Publication number: 20070217467
    Abstract: A laser diode package is provided. The laser diode package includes a plurality of laser diode submount assemblies, each assembly including a submount to which one or more laser diodes are attached. An electrically isolating pad is attached to the same surface of the submount as the laser diode. A metallization layer is deposited onto the outermost surface of the electrically isolating pad, to which an electrical contact pad is bonded. Electrical interconnects, such as wire or ribbon interconnects, connect the laser diode or diodes to the metallization layer. Preferably the laser diode stack is formed by electrically and mechanically bonding together the bottom surface of each submount to the electrical contact pad of an adjacent submount assembly. The laser diode stack is thermally coupled to a cooling block. Preferably thermally conductive and electrically isolating members are interposed between the laser diode stack and the cooling block.
    Type: Application
    Filed: March 20, 2006
    Publication date: September 20, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeFranza, David Dawson, Jason Farmer
  • Publication number: 20070217470
    Abstract: An end-pumped solid state laser utilizing a laser diode stack of laser diode subassemblies as the pump source is provided. The laser gain medium of the solid state laser is contained within a laser cavity defined by a pair of reflective elements. Each laser diode subassembly includes a submount to which one or more laser diodes are attached. The fast axis corresponding to each output beam of each laser diode is substantially perpendicular to the mounting surfaces of the submount. The laser diodes can be of one wavelength or multiple wavelengths. Preferably the submount has a high thermal conductivity and a CTE that is matched to that of the laser diode. On top of the submount, adjacent to the laser diode, is a spacer. The laser diode stack is formed by mechanically coupling the bottom surface of each submount to the spacer of an adjacent submount assembly. Preferably the laser diode stack is thermally coupled to a cooling block.
    Type: Application
    Filed: May 18, 2006
    Publication date: September 20, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeFranza, David Dawson, Jason Farmer
  • Publication number: 20070217469
    Abstract: A side-pumped solid state laser utilizing a laser diode stack of laser diode submount assemblies is provided. The laser gain medium of the solid state laser is contained within a laser cavity defined by a pair of reflective elements. Each laser diode submount assembly includes a submount to which one or more laser diodes are attached. The radiation-emitting active layer of each laser diode is positioned substantially parallel to the mounting surfaces of the submount, causing the fast axis of each laser diode's output beam to be substantially orthogonal to the submount mounting surfaces. The laser diodes can be of one wavelength or multiple wavelengths. Preferably the submount has a high thermal conductivity and a CTE that is matched to that of the laser diode. On top of the submount, adjacent to the laser diode, is a spacer. The laser diode stack is formed by mechanically coupling the bottom surface of each submount to the spacer of an adjacent submount assembly.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 20, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeFranza, David Dawson, Jason Farmer
  • Publication number: 20070217471
    Abstract: A laser diode package is provided, the package including a plurality of laser diode submount assemblies. Each laser diode submount assembly includes a submount comprised of a non-conductive material. At least one laser diode is attached to a first portion of one surface of each submount while a spacer is attached to a second portion of the same submount surface. Preferably the submount has a high thermal conductivity and a CTE that is matched to that of the laser diode. The laser diode stack is formed by mechanically coupling the bottom surface of each submount to the spacer of an adjacent submount assembly. The individual laser diodes of the fabricated stack can be serially coupled together, coupled together in parallel, or individually addressable. To provide package cooling, the laser diode stack is thermally coupled to a cooling block.
    Type: Application
    Filed: July 24, 2006
    Publication date: September 20, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeFranza, David Dawson, Jason Farmer
  • Publication number: 20070217468
    Abstract: A laser diode package is provided, the package including a plurality of laser diode submount assemblies. Each submount assembly includes a submount. At least one laser diode is attached to a front portion of each submount while a spacer, preferably comprised of an electrically isolating pad and an electrical contact pad, is attached to a rear portion of each submount. Electrical interconnects, such as wire or ribbon interconnects, connect the laser diode or diodes to the electrical contact pad, either directly or indirectly. Preferably the laser diode stack is formed by electrically and mechanically bonding together the bottom surface of each submount to the electrical contact pad of an adjacent submount assembly. The laser diode stack is thermally coupled to a cooling block. Preferably thermally conductive and electrically isolating members are interposed between the laser diode stack and the cooling block.
    Type: Application
    Filed: May 4, 2006
    Publication date: September 20, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeFranza, David Dawson, Jason Farmer