Patents by Inventor Mark Durcan
Mark Durcan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160064480Abstract: The invention includes semiconductor constructions having trenched isolation regions. The trenches of the trenched isolation regions can include narrow bottom portions and upper wide portions over the bottom portions. Electrically insulative material can fill the upper wide portions while leaving voids within the narrow bottom portions. The bottom portions can have substantially vertical sidewalls, and can join to the upper portions at steps which extend substantially perpendicularly from the sidewalls. The trenched isolation regions can be incorporated into a memory array, and/or can be incorporated into an electronic system. The invention also includes methods of forming semiconductor constructions.Type: ApplicationFiled: November 6, 2015Publication date: March 3, 2016Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 8921914Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites can be created on a surface of the substrate. The creation of the nucleation sites may include implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures may be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures may include at least one of nanocrystals, nanowires, or nanotubes. According to various nanocrystal embodiments, the nanocrystals can be positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.Type: GrantFiled: August 5, 2013Date of Patent: December 30, 2014Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Publication number: 20130323895Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites can be created on a surface of the substrate. The creation of the nucleation sites may include implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nano scale structures may be grown using the controllable distribution of nucleation sites to seed the growth of the nano scale structures. According to various embodiments, the nano scale structures may include at least one of nanocrystals, nanowires, or nanotubes. According to various nanocrystal embodiments, the nanocrystals can be positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.Type: ApplicationFiled: August 5, 2013Publication date: December 5, 2013Applicant: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 8598632Abstract: An integrated circuit having differently-sized features wherein the smaller features have a pitch multiplied relationship with the larger features, which are of such size as to be formed by conventional lithography.Type: GrantFiled: June 22, 2012Date of Patent: December 3, 2013Assignee: Round Rock Research LLCInventors: Luan Tran, William T. Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K. Abatchev, Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 8501563Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites can be created on a surface of the substrate. The creation of the nucleation sites may include implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures may be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures may include at least one of nanocrystals, nanowires, or nanotubes. According to various nanocrystal embodiments, the nanocrystals can be positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.Type: GrantFiled: September 13, 2012Date of Patent: August 6, 2013Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Publication number: 20130017655Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites can be created on a surface of the substrate. The creation of the nucleation sites may include implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures may be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures may include at least one of nanocrystals, nanowires, or nanotubes. According to various nanocrystal embodiments, the nanocrystals can be positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.Type: ApplicationFiled: September 13, 2012Publication date: January 17, 2013Applicant: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 8288818Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites are created on a surface of the substrate. The creation of the nucleation sites includes implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures can be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures include at least one of nanocrystals, nanowires, and nanotubes. According to various nanocrystal embodiments, the nanocrystals are positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.Type: GrantFiled: April 18, 2011Date of Patent: October 16, 2012Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Publication number: 20120256309Abstract: An integrated circuit having differently-sized features wherein the smaller features have a pitch multiplied relationship with the larger features, which are of such size as to be formed by conventional lithography.Type: ApplicationFiled: June 22, 2012Publication date: October 11, 2012Inventors: Luan Tran, William T. Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi (Jenny) Bai, Zhiping Yin, Paul Morgan, Mirzafer K. Abatchev, Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 8216949Abstract: A method lor integrated circuit fabrication is disclosed. A spacer pattern is provided including a plurality ot spacers in an array region of a partially-fabricated integrated circuit. Each spacer is at least partly defined by opposing open volumes extending along lengths of the spacers. A pattern is subsequently defined in a periphery region of the partially-fabricated integrated circuit. A consolidated pattern is formed by concurrently transferring the spacer pattern and the pattern in the periphery region into an underlying masking layer. The consolidated pattern is transferred to an underlying substrate.Type: GrantFiled: February 17, 2010Date of Patent: July 10, 2012Assignee: Round Rock Research, LLCInventors: Mirzafer K Abatchev, Gurtej Sandhu, Luan Tran, William T Rericha, D. Mark Durcan
-
Patent number: 8207576Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC.Type: GrantFiled: January 31, 2007Date of Patent: June 26, 2012Assignee: Round Rock Research, LLCInventors: Luan Tran, William T Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K Abatchev, Gurtej S Sandhu, D. Mark Durcan
-
Patent number: 8124491Abstract: Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location.Type: GrantFiled: August 25, 2009Date of Patent: February 28, 2012Assignee: Micron Technology, Inc.Inventors: D. Mark Durcan, Trung T. Doan, Roger R. Lee, Fernando Gonzalez
-
Patent number: 8119535Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC.Type: GrantFiled: December 11, 2009Date of Patent: February 21, 2012Assignee: Round Rock Research, LLCInventors: Luan Tran, William T Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K Abatchev, Gurtej S Sandhu, D. Mark Durcan
-
Patent number: 8048812Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern. Pitch multiplication is accomplished by patterning an amorphous carbon layer. Sidewall spacers are then formed on the amorphous carbon sidewalls which are then removed; the sidewall spacers defining the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is transferred to the BARC. The combined pattern is transferred to an underlying amorphous silicon layer. The combined pattern is then transferred to the silicon oxide layer and then to an amorphous carbon mask layer. The combined mask pattern, is then etched into the underlying substrate.Type: GrantFiled: April 28, 2010Date of Patent: November 1, 2011Assignee: Round Rock Research, LLCInventors: Luan Tran, William T. Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K. Abatchev, Gurtej S. Sandhu, D. Mark Durcan
-
Publication number: 20110210386Abstract: Devices can be fabricated using a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites are created on a surface of the substrate. The creation of the nucleation sites includes implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures can be grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures include at least one of nanocrystals, nanowires, and nanotubes. According to various nanocrystal embodiments, the nanocrystals are positioned within a gate stack and function as a floating gate for a nonvolatile device. Other embodiments are provided herein.Type: ApplicationFiled: April 18, 2011Publication date: September 1, 2011Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 7935950Abstract: An ovonic phase-change semiconductor memory device having a reduced area of contact between electrodes of chalcogenide memories, and methods of programming the same are disclosed. Such memory devices include a lower electrode including non-parallel sidewalls. An insulative material overlies the lower electrode such that an upper surface of the lower electrode is exposed. In one embodiment, the insulative material and lower electrode may have a co-planar upper surface. In another embodiment, an upper surface of the lower electrode is within a recess in the insulative material. A chalcogenide material and an upper electrode are formed over the upper surface of the lower electrode. This allows the memory cells to be made smaller and allows the overall power requirements for the memory cell to be minimized.Type: GrantFiled: August 2, 2007Date of Patent: May 3, 2011Assignee: Round Rock Research, LLCInventors: Trung T. Doan, D. Mark Durcan, Brent D. Gilgen
-
Patent number: 7927948Abstract: An aspect relates to a method of growing nanoscale structures on a semiconductor substrate. According to various embodiments, nucleation sites are created on a surface of the substrate. The creation of the nucleation sites includes implanting ions with an energy and a dose selected to provide a controllable distribution of the nucleation sites across the surface of the substrate. Nanoscale structures are grown using the controllable distribution of nucleation sites to seed the growth of the nanoscale structures. According to various embodiments, the nanoscale structures include at least one of nanocrystals, nanowires and nanotubes. According to various nanocrystal embodiments, the nanocrystals are positioned within a gate stack and function as a floating gate for a nonvolatile device. Other aspects and embodiments are provided herein.Type: GrantFiled: July 20, 2005Date of Patent: April 19, 2011Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Patent number: 7919386Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes within a capacitor array area over a substrate. The capacitor electrodes comprise outer lateral sidewalls. The plurality of capacitor electrodes is supported at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form said retaining structure. The plurality of capacitor electrodes is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.Type: GrantFiled: April 27, 2009Date of Patent: April 5, 2011Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, D. Mark Durcan
-
Publication number: 20100210111Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern. Pitch multiplication is accomplished by patterning an amorphous carbon layer. Sidewall spacers are then formed on the amorphous carbon sidewalls which are then removed; the sidewall spacers defining the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is transferred to the BARC. The combined pattern is transferred to an underlying amorphous silicon layer. The combined pattern is then transferred to the silicon oxide layer and then to an amorphous carbon mask layer. The combined mask pattern, is then etched into the underlying substrate.Type: ApplicationFiled: April 28, 2010Publication date: August 19, 2010Applicant: ROUND ROCK RESEARCH, LLCInventors: Luan Tran, William T. Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi (Jenny) Bai, Zhiping Yin, Paul Morgan, Mirzafer K. Abatchev, Gurtej S. Sandhu, D. Mark Durcan
-
Publication number: 20100203727Abstract: Different sized features in the array and in the periphery of an integrated circuit are patterned on a substrate in a single step. In particular, a mixed pattern, combining two separately formed patterns, is formed on a single mask layer and then transferred to the underlying substrate. The first of the separately formed patterns is formed by pitch multiplication and the second of the separately formed patterns is formed by conventional photolithography. The first of the separately formed patterns includes lines that are below the resolution of the photolithographic process used to form the second of the separately formed patterns. These lines are made by forming a pattern on photoresist and then etching that pattern into an amorphous carbon layer. Sidewall pacers having widths less than the widths of the un-etched parts of the amorphous carbon are formed on the sidewalls of the amorphous carbon. The amorphous carbon is then removed, leaving behind the sidewall spacers as a mask pattern.Type: ApplicationFiled: February 17, 2010Publication date: August 12, 2010Applicant: Micron Technology, Inc.Inventors: Mirzafer K. Abatchev, Gurtej Sandhu, Luan Tran, William T. Rericha, D. Mark Durcan
-
Patent number: 7718540Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC.Type: GrantFiled: February 1, 2007Date of Patent: May 18, 2010Assignee: Round Rock Research, LLCInventors: Luan Tran, William T Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi Bai, Zhiping Yin, Paul Morgan, Mirzafer K Abatchev, Gurtej S Sandhu, D. Mark Durcan