Patents by Inventor Mark E. Curran
Mark E. Curran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6972176Abstract: The genomic structure including the sequence of the intron/exon junctions is disclosed for KVLQT1 and KCNE1 which are genes associated with long QT syndrome. Additional sequence data for the two genes ARE also disclosed. Also disclosed are newly found mutations in KVLQT1 which result in long QT syndrome. The intron/exon junction sequence data allow for the design of primer pairs to amplify and sequence across all of the exons of the two genes. This can be used to screen persons for the presence of mutations which cause long QT syndrome. Assays can be performed to screen persons for the presence of mutations in either the DNA or proteins. The DNA and proteins may also be used in assays to screen for drugs which will be useful in treating or preventing the occurrence of long QT syndrome.Type: GrantFiled: February 20, 2003Date of Patent: December 6, 2005Assignees: University of Utah Research Foundation, Genzyme CorporationInventors: Mark T. Keating, Michael C. Sanguinetti, Mark E. Curran, Gregory M. Landes, Timothy D. Connors, Timothy C. Burn, Igor Splawski, Qing Wang
-
Publication number: 20030170708Abstract: The genomic structure including the sequence of the intron/exon junctions is disclosed for KVLQT1 and KCNE1 which are genes associated with long QT syndrome. Additional sequence data for the two genes ARE also disclosed. Also disclosed are newly found mutations in KVLQT1 which result in long QT syndrome. The intron/exon junction sequence data allow for the design of primer pairs to amplify and sequence across all of the exons of the two genes. This can be used to screen persons for the presence of mutations which cause long QT syndrome. Assays can be performed to screen persons for the presence of mutations in either the DNA or proteins. The DNA and proteins may also be used in assays to screen for drugs which will be useful in treating or preventing the occurrence of long QT syndrome.Type: ApplicationFiled: February 20, 2003Publication date: September 11, 2003Inventors: Mark T. Keating, Michael C. Sanguinetti, Mark E. Curran, Gregory M. Landes, Timothy D. Connors, Timothy C. Burn, Igor Splawski
-
Patent number: 6582913Abstract: The genomic structure including the sequence of the intron/exon junctions is disclosed for KVLQT1 and KCNE1 which are genes associated with long QT syndrome. Additional sequence data for the two genes ARE also disclosed. Also disclosed are newly found mutations in KVLQT1 which result in long QT syndrome. The intron/exon junction sequence data allow for the design of primer pairs to amplify and sequence across all of the exons of the two genes. This can be used to screen persons for the presence of mutations which cause long QT syndrome. Assays can be performed to screen persons for the presence of mutations in either the DNA or proteins. The DNA and proteins may also be used in assays to screen for drugs which will be useful in treating or preventing the occurrence of long QT syndrome.Type: GrantFiled: June 19, 2000Date of Patent: June 24, 2003Assignees: University of Utah Research Foundation, Genzyme, Inc.Inventors: Mark T. Keating, Michael C. Sanguinetti, Mark E. Curran, Gregory M. Landes, Timothy D. Connors, Timothy C. Burn, Igor Splawski
-
Patent number: 6451534Abstract: The genomic structure including the sequence of the intron/exon junctions is disclosed for KVLQT1 and KCNE1 which are genes associated with long QT syndrome. Additional sequence data for the two genes ARE also disclosed. Also disclosed are newly found mutations in KVLQT1 which result in long QT syndrome. The intron/exon junction sequence data allow for the design of primer pairs to amplify and sequence across all of the exons of the two genes. This can be used to screen persons for the presence of mutations which cause long QT syndrome. Assays can be performed to screen persons for the presence of mutations in either the DNA or proteins. The DNA and proteins may also be used in assays to screen for drugs which will be useful in treating or preventing the occurrence of long QT syndrome.Type: GrantFiled: June 19, 2000Date of Patent: September 17, 2002Assignees: University of Utah Research Foundation, Genzyme CorporationInventors: Mark T. Keating, Michael C. Sanguinetti, Mark E. Curran, Gregory M. Landes, Timothy D. Connors, Timothy C. Burn, Igor Splawski
-
Patent number: 6420124Abstract: The genomic structure including the sequence of the intron/exon junctions is disclosed for KVLQT1 and KCNE1 which are genes associated with long QT syndrome. Additional sequence data for the two genes ARE also disclosed. Also disclosed are newly found mutations in KVLQT1 which result in long QT syndrome. The intron/exon junction sequence data allow for the design of primer pairs to amplify and sequence across all of the exons of the two genes. This can be used to screen persons for the presence of mutations which cause long QT syndrome. Assays can be performed to screen persons for the presence of mutations in either the DNA or proteins. The DNA and proteins may also be used in assays to screen for drugs which will be useful in treating or preventing the occurrence of long QT syndrome.Type: GrantFiled: June 19, 2000Date of Patent: July 16, 2002Assignees: University of Utah Research Foundation, Genzyme CorporationInventors: Mark T. Keating, Michael C. Sanguinetti, Mark E. Curran, Gregory M. Landes, Timothy D. Connors, Timothy C. Burn, Igor Splawski
-
Patent number: 6277978Abstract: The genomic structure including the sequence of the intron/exon junctions is disclosed for KVLQT1 and KCNE1 which are genes associated with long QT syndrome. Additional sequence data for the two genes are also disclosed. Also disclosed are newly found mutations in KVLQT1 which result in long QT syndrome. The intron/exon junction sequence data allow for the design of primer pairs to amplify and sequence across all of the exons of the two genes. This can be used to screen persons for the presence of mutations which cause long QT syndrome. Assays can be performed to screen persons for the presence of mutations in either the DNA or proteins. The DNA and proteins may also be used in assays to screen for drugs which will be useful in treating or preventing the occurrence of long QT syndrome.Type: GrantFiled: August 17, 1998Date of Patent: August 21, 2001Assignees: University of Utah Research Foundation, Genzyme CorporationInventors: Mark T. Keating, Michael C. Sanguinetti, Mark E. Curran, Gregory M. Landes, Timothy D. Connors, Timothy C. Burn, Igor Splawski
-
Patent number: 5599673Abstract: The invention relates to the identification of the molecular basis of long QT syndrome. More specifically, the invention has identified that SCN5A and HERG cause long QT syndrome. Molecular variants of the SCN5A and HERG genes contribute to the syndrome. The analysis of these genes will provide an early diagnosis of subjects with long QT syndrome. The diagnostic methods comprise analyzing the nucleic acid sequences of the SCN5A or HERG genes of an individual to be tested and comparing them with the nucleic acid sequence of the native, nonvariant genes. Alternatively, the amino acid sequences of SCN5A or HERG may be analyzed for mutations which cause long QT syndrome. Presymptomatic diagnosis of long QT syndrome will enable practitioners to treat this disorder using existing medical therapy.Type: GrantFiled: March 9, 1995Date of Patent: February 4, 1997Assignee: University of Utah Research FoundationInventors: Mark T. Keating, Mark E. Curran, Qing Wang
-
Patent number: 5166509Abstract: An optical modulator or laser source has a detector for detecting its output signal and for producing a corresponding output signal. A tapping device is connected to tap off a portion of the input modulation signal as a reference signal. The reference signal is compared and subtracted from the detector output signal by a subtraction unit in order to produce an error output signal which will be proportional to the laser noise/distortion components. This error signal is amplified and connected to an external modulator linked to the laser optical output and intensity modulates the laser output signal by the error signal in order to reduce or cancel the noise and distortion components in the signal.Type: GrantFiled: November 9, 1990Date of Patent: November 24, 1992Assignee: Tacan CorporationInventor: Mark E. Curran
-
Patent number: 5113244Abstract: The fiber optic combiner/splitter is a positive and negative axicon combination which can convert a ring-shaped beam into a solid beam. The positive half of the axicon is effectively a plano-convex lens where the convex surface is generally a shallow cone. The flat surface of the lens abuts each end of an array of single mode fibers which are arranged in a ring configuration around a support member. The negative half of the axicon is effectively a plano-concave lens which is complementary to the positive lens. The focused beams from the positive half of the axicon are combined to form a single beam which is then directed into a single optical fiber. For conversions in the reverse direction, light is taken from a single multimode fiber and expanded into a ring-like pattern. The ring of light is picked up by the ring of single mode fibers. Each single mode fiber receives an equal amount of optical energy or power to provide good efficiency in splitting of the multiplexed beam.Type: GrantFiled: February 6, 1991Date of Patent: May 12, 1992Assignee: General Dynamics Corporation, Electronics DivisionInventor: Mark E. Curran
-
Patent number: 5054875Abstract: A multi-mode optical fiber segment having partially reflecting mirrors on each end functions as a resonant cavity with respect to the modulation frequency when the length of the fiber is equal to one-half the modulation wavelength of the light injected into the fiber. Modulated light is injected through a hole in the mirror at one end, either from a fiber, a waveguide, or directly from a laser diode. The core diameter of the cavity fiber is limited only by the requirement that it must be much larger than the input hole. Light exits though a hole in the mirror opposite the input hole. Upon entry into the resonant cavity, light is subject to multi-modal propagation resulting in dispersion. The resultant output light of the fiber is lower overall in intensity, but its useful frequency response is expanded by the bandpass half-skirt of the fiber-optic filter.Type: GrantFiled: August 1, 1990Date of Patent: October 8, 1991Assignee: General DynamicsInventor: Mark E. Curran