Patents by Inventor Mark E. Granahan

Mark E. Granahan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9245754
    Abstract: A method of forming a charge balance region in an active semiconductor device includes: forming an epitaxial region including material of a first conductivity type on an upper surface of a substrate of the semiconductor device; forming multiple recessed features at least partially through the epitaxial region; depositing a film comprising material of a second conductivity type on a bottom and/or sidewalls of the recessed features using atomic layer deposition; and performing thermal processing such that at least a portion of the film deposited on the bottom and/or sidewalls of each of the recessed features forms a region of the second conductivity type in the epitaxial layer which follows a contour of the recessed features, the region of the second conductivity type, in conjunction with the epitaxial layer proximate the region of the second conductivity type, forming the charge balance region.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: January 26, 2016
    Inventor: Mark E. Granahan
  • Publication number: 20150348784
    Abstract: A method of forming a charge balance region in an active semiconductor device includes: forming an epitaxial region including material of a first conductivity type on an upper surface of a substrate of the semiconductor device; forming multiple recessed features at least partially through the epitaxial region; depositing a film comprising material of a second conductivity type on a bottom and/or sidewalls of the recessed features using atomic layer deposition; and performing thermal processing such that at least a portion of the film deposited on the bottom and/or sidewalls of each of the recessed features forms a region of the second conductivity type in the epitaxial layer which follows a contour of the recessed features, the region of the second conductivity type, in conjunction with the epitaxial layer proximate the region of the second conductivity type, forming the charge balance region.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Inventor: Mark E. Granahan
  • Patent number: 8546925
    Abstract: A packaged power supply module (100) comprising a chip (110) with a first power field effect transistor (FET) and a second chip (120) with a second FET conductively attached side-by-side onto a conductive carrier (130), the transistors having bond pads of a first area (210) and the carrier having bond pads of a second area (230) smaller than the first area. Conductive bumps (114, 115, 124, 125) attached to the transistor bond pads and conductive bumps (126) attached to the carrier bond pads have equal volume and are coplanar (150), the bumps on the transistor pads having a first height and the bumps on the carrier pads having a second height greater than the first height.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: October 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Juan A. Herbsommer, Osvaldo J. Lopez, Jonathan A. Noquil, David Jauregui, Mark E. Granahan
  • Publication number: 20130075893
    Abstract: A packaged power supply module (100) comprising a chip (110) with a first power field effect transistor (FET) and a second chip (120) with a second FET conductively attached side-by-side onto a conductive carrier (130), the transistors having bond pads of a first area (210) and the carrier having bond pads of a second area (230) smaller than the first area. Conductive bumps (114, 115, 124, 125) attached to the transistor bond pads and conductive bumps (126) attached to the carrier bond pads have equal volume and are coplanar (150), the bumps on the transistor pads having a first height and the bumps on the carrier pads having a second height greater than the first height.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Juan A. HERBSOMMER, Osvaldo J. LOOPEZ, Jonathan A. NOQUIL, David JAUREGUI, Mark E. GRANAHAN
  • Patent number: 5455523
    Abstract: A non-linear transmission line terminator (10) is provided in which voltages appearing on a transmission line are sensed. If the voltage level sensed is equal to a predetermined voltage, the non-linear transmission line terminator (10) couples a reference voltage to the transmission line. If the sensed voltage is less than the predetermined voltage, the non-linear transmission line terminator (10) delivers current to the transmission line having a magnitude related non-linearly to the sensed voltage.
    Type: Grant
    Filed: September 6, 1994
    Date of Patent: October 3, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Dean A. Wallace, Brad P. Whitney, Todd M. Neale, Mark E. Granahan
  • Patent number: 5291121
    Abstract: A method and apparatus for a circuit physically realizing a virtual ground function producing a virtual ground voltage halfway between the supply and common voltages and having improved accuracy and stability is described. A stable bias current source is coupled to a precision resistor voltage divider network, which is used as a voltage reference generator to produce a virtual ground voltage of a precise value. This reference voltage is coupled to an operational amplifier configured in a unity gain configuration. The circuit thus created offers numerous advantages over the virtual ground circuits in use in the prior art. An integrated circuit implementing this circuit is described, and alternative packaging embodiments are disclosed. Other embodiments are also disclosed.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: March 1, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Todd M. Neale, Brad P. Whitney, Mark E. Granahan
  • Patent number: 5280235
    Abstract: A method and apparatus for a circuit physically realizing a virtual ground function and having improved accuracy and stability is described. A stable bias current source is coupled to a bandgap reference generator and resistances to produce a virtual ground voltage of a precise value, this voltage is then coupled to an operational amplifier configured in a unity gain configuration. The circuit thus created offers numerous advantages over the virtual ground circuits in use in the prior art. An integrated circuit implementing this circuit is described, and alternative packaging embodiments are disclosed. Other embodiments are also disclosed.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: January 18, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: Todd M. Neale, Brad P. Whitney, Mark E. Granahan