Patents by Inventor Mark E. Kuznetsov

Mark E. Kuznetsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090059970
    Abstract: A frequency swept laser source that generates an optical signal that is tuned over a spectral scan band at single discrete wavelengths associated with longitudinal modes of the swept laser source. Laser hopping over discrete single cavity modes allows long laser coherence length even under dynamic very high speed tuning conditions. A ramp drive to the laser is used to linearize laser frequency tuning. A beam splitter is used to divide the optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample. A detector system detects the optical signal from the reference arm and the sample arm for generating depth profiles and images of the sample.
    Type: Application
    Filed: February 7, 2008
    Publication date: March 5, 2009
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Walid A. Atia, Mark E. Kuznetsov, Dale C. Flanders
  • Publication number: 20090059971
    Abstract: A frequency swept laser source that generates an optical signal that is tuned over a spectral scan band at single discrete wavelengths associated with longitudinal modes of the swept laser source. Laser hopping over discrete single cavity modes allows long laser coherence length even under dynamic very high speed tuning conditions. A ramp drive to the laser is used to linearize laser frequency tuning. A beam splitter is used to divide the optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample. A detector system detects the optical signal from the reference arm and the sample arm for generating depth profiles and images of the sample.
    Type: Application
    Filed: February 7, 2008
    Publication date: March 5, 2009
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Walid A. Atia, Mark E. Kuznetsov, Dale C. Flanders
  • Patent number: 7482589
    Abstract: An optical power control system for a semiconductor source spectroscopy system controls power fluctuations in the tunable signal from the spectroscopy system and thus improves the noise performance of the system. This general solution has advantages relative to other systems that simply detect reference power levels during the scan and then correct the detected signal after interaction with the sample by reducing the requirements for coordinating the operation of the sample detectors and power or reference detectors. The spectroscopy system comprises a semiconductor source and a tunable filter. The combination of the semiconductor source and tunable signal illuminate a sample with a tunable signal, being tunable over a scan band. The power control system comprises an amplitude detector system for detecting the power of the tunable optical signal and power control system for regulating the amplitude of the tunable optical signal in response to its detected power.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: January 27, 2009
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 7415049
    Abstract: An external cavity laser has a mirror-based resonant tunable filter, such as a Fabry Perot tunable filter or Gires-Tournois interferometer tuning element, with the tunable filter being preferably used as a laser cavity mirror. A mirror-based resonant tunable filter is selected in which the spectral response in reflection has an angular dependence. A tilt scheme is used whereby by selecting an appropriate angle between the filter's nominal optical axis and the cavity optical axis, a narrowband peak spectral reflection is provided to the laser cavity. This tunable narrowband spectral reflection from the filter is used to lock and tune the laser output wavelength.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: August 19, 2008
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Mark E. Kuznetsov, Walid A. Atia
  • Patent number: 7327772
    Abstract: An optical resonator including is designed is to degrade the ability of the resonator to support suppress higher order transverse spatial modes. The inventive optical resonator forces Higher higher order transverse modes to be fundamentally unstable in the inventive optical resonator, ultimately achieving ultimately to achieving single transverse mode resonator operation. Specifically, the bounded phase deflection mirror shape or intracavity lens profile is tailored to confine the fundamental mode while rendering the higher order modes unstable. This has application in MEMS/MOEMS optical resonator devices by suppressing the side modes and increasing the side mode suppression ratio (SMSR), as well as improving SMSR tolerance to device external alignment, for example. This also has application to achieving single transverse mode operation in laser resonators, such as in semiconductor vertical-cavity surface-emitting lasers (VCSEL).
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: February 5, 2008
    Assignee: Axsun Technologies, Inc.
    Inventor: Mark E. Kuznetsov
  • Patent number: 7324569
    Abstract: A multi semiconductor source tunable spectroscopy system has two or more semiconductor sources for generating tunable optical signals that are tunable over different spectral bands. The system enables the combination of these tunable signals to form an output signal that is tunable over a combined band including these individual spectral bands of the separate semiconductor sources. The system further compensates for spectral roll-off associated with the semiconductor sources. Specifically, near the limits of the semiconductor sources' spectral bands, the power in the tunable signal tends to degrade or decrease. The system compensates for this roll-off using drive current control, attenuators, or electronic compensation.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 7292344
    Abstract: Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: November 6, 2007
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Dale C. Flanders, Petros Kotidis, Mark E. Kuznetsov
  • Patent number: 7242509
    Abstract: Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 10, 2007
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Dale C. Flanders, Petros Kotidis, Mark E. Kuznetsov
  • Patent number: 7230710
    Abstract: A semiconductor source spectroscopy system controls optical power variation of the tunable signal due to polarization dependent loss in the system and thus improves the noise performance of the system. It relies on using polarization control between the source and the sample and/or the sample and the detector. In one example, the source has a semiconductor optical amplifier and an intracavity tunable element for generating a tunable optical signal for illuminating a sample. The tunable optical signal is spectrally tuned over a scan band of the spectroscopy system by operation of the intracavity tunable element.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 12, 2007
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 7157712
    Abstract: An optical power control system for a semiconductor source spectroscopy system controls power fluctuations in the tunable signal from the spectroscopy system and thus improves the noise performance of the system. This general solution has advantages relative to other systems that simply detect reference power levels during the scan and then correct the detected signal after interaction with the sample by reducing the requirements for coordinating the operation of the sample detectors and power or reference detectors. The spectroscopy system comprises a semiconductor source and a tunable filter. The combination of the semiconductor source and tunable signal illuminate a sample with a tunable signal, being tunable over a scan band. The power control system comprises an amplitude detector system for detecting the power of the tunable optical signal and power control system for regulating the amplitude of the tunable optical signal in response to its detected power.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: January 2, 2007
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 7095776
    Abstract: A wavelength measurement system uses birefringent material waveplate, thereby producing a substantially sinusoidal spectral response. As a result, the responses of multiple birefringent filters can be combined to yield a filter system with a periodic frequency response that has an additive wavelength resolution that is spectrally stable. That is, the wavelength measurement system does not have regions where wavelength resolution is degraded. In one implementation, a waveplate system 112 is used, placed between two blocks of birefringent material 110 and 114. A quadrant detector 116 is used to detect the intensities of the resulting four beams.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: August 22, 2006
    Assignee: Axsun Technologies, Inc.
    Inventors: Mark E. Kuznetsov, Peter S. Whitney, Dale C. Flanders
  • Patent number: 7061618
    Abstract: Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: June 13, 2006
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Dale C. Flanders, Petros Kotidis, Mark E. Kuznetsov
  • Patent number: 6810062
    Abstract: An optical resonator is designed to suppress higher order transverse spatial modes. Higher order transverse modes in the inventive optical resonator are forced to be unstable, and ultimately achieving single transverse mode resonator operation. Specifically, the mirror shape or intracavity lens profile is tailored to bound the lower order modes while rendering the higher order modes unstable. This has application in MEMS/MOEMS devices by reducing side mode suppression ratio (SMSR) dependence on alignment tolerances, for example.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: October 26, 2004
    Assignee: Axsun Technologies, Inc.
    Inventor: Mark E. Kuznetsov
  • Publication number: 20040136433
    Abstract: An optical resonator including is designed is to degrade the ability of the resonator to support suppress higher order transverse spatial modes. The inventive optical resonator forces Higher higher order transverse modes to be fundamentally unstable in the inventive optical resonator, ultimately achieving ultimately to achieving single transverse mode resonator operation. Specifically, the bounded phase deflection mirror shape or intracavity lens profile is tailored to confine the fundamental mode while rendering the higher order modes unstable. This has application in MEMS/MOEMS optical resonator devices by suppressing the side modes and increasing the side mode suppression ratio (SMSR), as well as improving SMSR tolerance to device external alignment, for example. This also has application to achieving single transverse mode operation in laser resonators, such as in semiconductor vertical-cavity surface-emitting lasers (VCSEL).
    Type: Application
    Filed: October 10, 2003
    Publication date: July 15, 2004
    Applicant: AXSUN Technologies, Inc.
    Inventor: Mark E. Kuznetsov
  • Publication number: 20040022283
    Abstract: A wavelength measurement system uses birefringent material waveplate, thereby producing a substantially sinusoidal spectral response. As a result, the responses of multiple birefringent filters can be combined to yield a filter system with a periodic frequency response that has an additive wavelength resolution that is spectrally stable. That is, the wavelength measurement system does not have regions where wavelength resolution is degraded. In one implementation, a waveplate system 112 is used, placed between two blocks of birefringent material 110 and 114. A quadrant detector 116 is used to detect the intensities of the resulting four beams.
    Type: Application
    Filed: March 19, 2003
    Publication date: February 5, 2004
    Applicant: Axsun Technologies, Inc.
    Inventors: Mark E. Kuznetsov, Peter S. Whitney, Dale C. Flanders
  • Patent number: 6549548
    Abstract: A wavelength measurement system uses birefringent material waveplate, thereby producing a substantially sinusoidal spectral response. As a result, the responses of multiple birefringent filters can be combined to yield a filter system with a periodic frequency response that has an additive wavelength resolution that is spectrally stable. That is, the wavelength measurement system does not have regions where wavelength resolution is degraded. In one implementation, a waveplate system 112 is used, placed between two blocks of birefringent material 110 and 114. A quadrant detector 116 is used to detect the intensities of the resulting four beams.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: April 15, 2003
    Assignee: Axsun Technologies, Inc.
    Inventors: Mark E. Kuznetsov, Peter S. Whitney, Dale C. Flanders
  • Publication number: 20030021308
    Abstract: A wavelength measurement system uses birefringent material waveplate, thereby producing a substantially sinusoidal spectral response. As a result, the responses of multiple birefringent filters can be combined to yield a filter system with a periodic frequency response that has an additive wavelength resolution that is spectrally stable. That is, the wavelength measurement system does not have regions where wavelength resolution is degraded. In one implementation, a waveplate system 112 is used, placed between two blocks of birefringent material 110 and 114. A quadrant detector 116 is used to detect the intensities of the resulting four beams.
    Type: Application
    Filed: January 23, 2001
    Publication date: January 30, 2003
    Inventors: Mark E. Kuznetsov, Peter S. Whitney, Dale C. Flanders
  • Publication number: 20020196548
    Abstract: An optical resonator is designed to suppress higher order transverse spatial modes. Higher order transverse modes in the inventive optical resonator are forced to be unstable, and ultimately achieving single transverse mode resonator operation. Specifically, the mirror shape or intracavity lens profile is tailored to bound the lower order modes while rendering the higher order modes unstable. This has application in MEMS/MOEMS devices by reducing side mode suppression ratio (SMSR) dependence on alignment tolerances, for example.
    Type: Application
    Filed: April 11, 2001
    Publication date: December 26, 2002
    Inventor: Mark E. Kuznetsov
  • Patent number: 6473234
    Abstract: A tunable filter system comprises a signal source providing a WDM having multiple channels, or other signal requiring spectral analysis, within a spectral signal band. A reference signal source is also provided that generates a reference signal with spectral features, such as narrow spectral lines, that are located within a spectral reference band. A tunable filter functions as a band pass filter in transmission and a notch filter in reflection. It is controlled to filter both the reference signal and the WDM signal. A transmission detector is provided to detect the signal transmission through the tunable filter and a return detector is provided to detect the signal that is returned from the filter. Embodiments of the invention rely on a characteristic of a class of tunable filters, such as Fabry Perot etalons, in which light that is not transmitted through the filter is reflected. Thus, while the tunable filter appears as a band pass filter in transmission, it functions as a notch filter in reflection.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: October 29, 2002
    Assignee: Axsun Technologies, Inc.
    Inventor: Mark E. Kuznetsov
  • Patent number: 6459710
    Abstract: A semiconductor laser system includes a reflector on the lid that directs light emitted from the front facet to the monitoring diode. Thus, even when the diode is installed behind the semiconductor laser chip, and as a result receives back facet light, the ratio of front facet to back facet light received by the monitoring diode is increased due to the operation of the reflector. This configuration improves power tracking in Bragg grating stabilized semiconductor laser systems, for example.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: October 1, 2002
    Assignee: Axsun Technologies, Inc.
    Inventors: Peter S. Whitney, Mark E. Kuznetsov, Steven C. Fawcett, Mark R. Malonson