Patents by Inventor Mark E. Shields

Mark E. Shields has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11506719
    Abstract: A monitoring method includes, among other things, within a vehicle, providing a first electrical system with an auxiliary battery, and a second electrical system with a primary battery. The method further includes electrically coupling the first electrical system to the second electrical system, electrically loading the auxiliary battery and the primary battery, and comparing an electrical parameter of the auxiliary battery to a threshold value to assess a state of the auxiliary battery.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: November 22, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Hanyang B. Chen, Michael J. Irby, Matthew Thomas Loiselle, William David Treharne, Mark E. Shields, Josephine S. Lee
  • Patent number: 11204010
    Abstract: A method for operating a vehicle that includes a DC/DC converter is described. In one example, the method includes adjusting an output voltage of the DC/DC converter after the DC/DC converter is used to crank an engine. The output voltage of the DC/DC converter may be adjusted responsive to a state of charge of an ultra-capacitor.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 21, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Alexander O'Connor Gibson, John Eric Rollinger, David Hancock, William Taylor, Mark E. Shields
  • Publication number: 20210262428
    Abstract: A method for operating a vehicle that includes a DC/DC converter is described. In one example, the method includes adjusting an output voltage of the DC/DC converter after the DC/DC converter is used to crank an engine. The output voltage of the DC/DC converter may be adjusted responsive to a state of charge of an ultra-capacitor.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 26, 2021
    Inventors: Alexander O'Connor Gibson, John Eric Rollinger, David Hancock, William Taylor, Mark E. Shields
  • Publication number: 20210063492
    Abstract: A monitoring method includes, among other things, within a vehicle, providing a first electrical system with an auxiliary battery, and a second electrical system with a primary battery. The method further includes electrically coupling the first electrical system to the second electrical system, electrically loading the auxiliary battery and the primary battery, and comparing an electrical parameter of the auxiliary battery to a threshold value to assess a state of the auxiliary battery.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 4, 2021
    Inventors: Hanyang B. Chen, Michael J. Irby, Matthew Thomas Loiselle, William David Treharne, Mark E. Shields, Josephine S. Lee
  • Patent number: 10714966
    Abstract: A vehicle includes a starter motor having a dedicated power source, an electric machine, and a controller configured to, responsive to a command for the motor to start an engine, open a switch to isolate the motor and source from a network electrically connected with the machine, and responsive to voltages on both sides of the switch falling within a predetermined range, close the switch to charge the source.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Mark E. Shields, Matthew Thomas Loiselle, Brian Keyse, Josephine S. Lee
  • Publication number: 20190326772
    Abstract: A vehicle includes a starter motor having a dedicated power source, an electric machine, and a controller configured to, responsive to a command for the motor to start an engine, open a switch to isolate the motor and source from a network electrically connected with the machine, and responsive to voltages on both sides of the switch falling within a predetermined range, close the switch to charge the source.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 24, 2019
    Inventors: Mark E. SHIELDS, Matthew Thomas Loiselle, Brian Keyse, Josephine S. Lee
  • Patent number: 9983306
    Abstract: A system and method for providing target selection and threat assessment for vehicle collision avoidance purposes that employ probability analysis of radar scan returns. The system determines a travel path of a host vehicle and provides a radar signal transmitted from a sensor on the host vehicle. The system receives multiple scan return points from detected objects, processes the scan return points to generate a distribution signal defining a contour of each detected object, and processes the scan return points to provide a position, a translation velocity and an angular velocity of each detected object. The system selects the objects that may enter the travel path of the host vehicle, and makes a threat assessment of those objects by comparing a number of scan return points that indicate that the object may enter the travel path to the number of the scan points that are received for that object.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: May 29, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuqing Zeng, Wende Zhang, Mark E. Shields
  • Patent number: 9970772
    Abstract: A method for localizing a vehicle in a digital map. GPS raw measurement data is retrieved from satellites. A digital map of a region traveled by the vehicle based on the raw measurement data is retrieved from a database. The digital map includes a geographic mapping of a traveled road and registered roadside objects. The registered roadside objects are positionally identified in the digital map by earth-fixed coordinates. Roadside objects are sensed in the region traveled by the vehicle using distance data and bearing angle data. The sensed roadside objects are matched on the digital map. A vehicle position is determined on the traveled road by fusing raw measurement data and sensor measurements of the identified roadside objects. The position of the vehicle is represented as a function of linearizing raw measurement data and the sensor measurement data as derived by a Jacobian matrix and normalized measurements, respectively.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 15, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuqing Zeng, Jeremy A. Salinger, Bakhtiar B. Litkouhi, Joel Pazhayampallil, Kevin A. O'Dea, James N. Nickolaou, Mark E. Shields
  • Publication number: 20160282128
    Abstract: A method for localizing a vehicle in a digital map. GPS raw measurement data is retrieved from satellites. A digital map of a region traveled by the vehicle based on the raw measurement data is retrieved from a database. The digital map includes a geographic mapping of a traveled road and registered roadside objects. The registered roadside objects are positionally identified in the digital map by earth-fixed coordinates. Roadside objects are sensed in the region traveled by the vehicle using distance data and bearing angle data. The sensed roadside objects are matched on the digital map. A vehicle position is determined on the traveled road by fusing raw measurement data and sensor measurements of the identified roadside objects. The position of the vehicle is represented as a function of linearizing raw measurement data and the sensor measurement data as derived by a Jacobian matrix and normalized measurements, respectively.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: SHUQING ZENG, JEREMY A. SALINGER, BAKHTIAR B. LITKOUHI, JOEL PAZHAYAMPALLIL, KEVIN A. O'DEA, JAMES N. NICKOLAOU, MARK E. SHIELDS
  • Patent number: 9435653
    Abstract: A method and system for localizing a vehicle in a digital map includes generating GPS coordinates of the vehicle on the traveled road and retrieving from a database a digital map of a region traveled by the vehicle based on the location of the GPS coordinates. The digital map includes a geographic mapping of a traveled road and registered roadside objects. The registered roadside objects are positionally identified in the digital map by longitudinal and lateral coordinates. Roadside objects in the region traveled are sensed by the vehicle. The sensed roadside objects are identified on the digital map. A vehicle position on the traveled road is determined utilizing coordinates of the sensed roadside objects identified in the digital map. The position of the vehicle is localized in the road as a function of the GPS coordinates and the determined vehicle position utilizing the coordinates of the sensed roadside objects.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: September 6, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shuqing Zeng, Jeremy A. Salinger, Bakhtiar B. Litkouhi, Joel Pazhayampallil, Kevin A. O'Dea, James N. Nickolaou, Mark E. Shields
  • Patent number: 9403413
    Abstract: Systems and methods for assisting in coupling a vehicle and a trailer include at least one sensing device disposed on the vehicle. A first coupling is coupled the vehicle and a second coupling is coupled to the trailer. A controller in communication with the at least one sensing device is configured to identify a spatial location of the first coupling. The controller is also configured to determine a spatial location of the second coupling using data from the at least one sensing device. The controller may also calculate a path between the spatial location of the first coupling and the spatial location of the second coupling and convey the path for facilitating movement of the first coupling toward the second coupling.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: August 2, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy J. Talty, Mark E. Shields, Wende Zhang, Michael A. Wuergler, Vernon Hole
  • Publication number: 20160109571
    Abstract: A system and method for providing target selection and threat assessment for vehicle collision avoidance purposes that employ probability analysis of radar scan returns. The system determines a travel path of a host vehicle and provides a radar signal transmitted from a sensor on the host vehicle. The system receives multiple scan return points from detected objects, processes the scan return points to generate a distribution signal defining a contour of each detected object, and processes the scan return points to provide a position, a translation velocity and an angular velocity of each detected object. The system selects the objects that may enter the travel path of the host vehicle, and makes a threat assessment of those objects by comparing a number of scan return points that indicate that the object may enter the travel path to the number of the scan points that are received for that object.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 21, 2016
    Inventors: SHUQING ZENG, WENDE ZHANG, MARK E. SHIELDS
  • Patent number: 9250324
    Abstract: A system and method for providing target selection and threat assessment for vehicle collision avoidance purposes that employ probability analysis of radar scan returns. The system determines a travel path of a host vehicle and provides a radar signal transmitted from a sensor on the host vehicle. The system receives multiple scan return points from detected objects, processes the scan return points to generate a distribution signal defining a contour of each detected object, and processes the scan return points to provide a position, a translation velocity and an angular velocity of each detected object. The system selects the objects that may enter the travel path of the host vehicle, and makes a threat assessment of those objects by comparing a number of scan return points that indicate that the object may enter the travel path to the number of the scan points that are received for that object.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: February 2, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuqing Zeng, Wende Zhang, Mark E. Shields
  • Publication number: 20150321666
    Abstract: Systems and methods for assisting in coupling a vehicle and a trailer include at least one sensing device disposed on the vehicle. A first coupling is coupled the vehicle and a second coupling is coupled to the trailer. A controller in communication with the at least one sensing device is configured to identify a spatial location of the first coupling. The controller is also configured to determine a spatial location of the second coupling using data from the at least one sensing device. The controller may also calculate a path between the spatial location of the first coupling and the spatial location of the second coupling and convey the path for facilitating movement of the first coupling toward the second coupling.
    Type: Application
    Filed: May 7, 2015
    Publication date: November 12, 2015
    Inventors: TIMOTHY J. TALTY, MARK E. SHIELDS, WENDE ZHANG, MICHAEL A. WUERGLER, VERNON HOLE
  • Publication number: 20150081211
    Abstract: A method and system for localizing a vehicle in a digital map includes generating GPS coordinates of the vehicle on the traveled road and retrieving from a database a digital map of a region traveled by the vehicle based on the location of the GPS coordinates. The digital map includes a geographic mapping of a traveled road and registered roadside objects. The registered roadside objects are positionally identified in the digital map by longitudinal and lateral coordinates. Roadside objects in the region traveled are sensed by the vehicle. The sensed roadside objects are identified on the digital map. A vehicle position on the traveled road is determined utilizing coordinates of the sensed roadside objects identified in the digital map. The position of the vehicle is localized in the road as a function of the GPS coordinates and the determined vehicle position utilizing the coordinates of the sensed roadside objects.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: GM GLOBAL TECHNOLOGIES OPERATIONS LLC
    Inventors: Shuqing Zeng, Jeremy A. Salinger, Bakhtiar B. Litkouhi, Joel Pazhayampallil, Kevin A. O'Dea, James N. Nickolaou, Mark E. Shields
  • Publication number: 20140347207
    Abstract: A system and method for providing target selection and threat assessment for vehicle collision avoidance purposes that employ probability analysis of radar scan returns. The system determines a travel path of a host vehicle and provides a radar signal transmitted from a sensor on the host vehicle. The system receives multiple scan return points from detected objects, processes the scan return points to generate a distribution signal defining a contour of each detected object, and processes the scan return points to provide a position, a translation velocity and an angular velocity of each detected object. The system selects the objects that may enter the travel path of the host vehicle, and makes a threat assessment of those objects by comparing a number of scan return points that indicate that the object may enter the travel path to the number of the scan points that are received for that object.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 27, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shuqing Zeng, Wende Zhang, Mark E. Shields