Patents by Inventor Mark E. Thompson

Mark E. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210020867
    Abstract: An OLED device comprises a substrate, a first electrode positioned over the substrate, a second electrode positioned over the first electrode, at least one emissive layer positioned between the first and second electrodes in a first region of the OLED device, and a multilayer dielectric reflector stack, comprising a plurality of dielectric reflector layers positioned between the substrate and the first electrode, wherein the multilayer dielectric reflector stack is configured to form an optical cavity with the emissive layer having a Purcell Factor of at least 3.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 21, 2021
    Inventors: Stephen R. Forrest, Yue Qu, Haonan Zhao, Mark E. Thompson
  • Publication number: 20210009895
    Abstract: The co-linear or near co-linear structure of bimetallic Janus-type two-coordinated metal complexes may allow for a large transition dipole moment that can enhance the radiative lifetime. The symmetric nature of the bimetallic Janus complexes diminishes or eliminates the polar nature of the monometallic carbene-metal-amide/arene complexes.
    Type: Application
    Filed: June 15, 2020
    Publication date: January 14, 2021
    Inventors: Peter I. Djurovich, Mark E. Thompson, Narcisse Ukwitegetse, Tian-Yi Li, Rasha Hamze
  • Publication number: 20200403166
    Abstract: Organic light emitting devices incorporating a film of metal complex emitters that are oriented with their transition dipole moment vectors oriented parallel to the device substrate enhances the outcoupling and eliminate the need for micro-lens arrays, gratings, or other physical extraneous outcoupling methods.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Applicant: University of Southern California
    Inventors: Mark E. THOMPSON, Matthew J. JUROW, Peter I. DJUROVICH, Tobias D. SCHMIDT
  • Publication number: 20200388773
    Abstract: The invention provides emissive materials and organic light emitting devices using the emissive materials in an emissive layer disposed between and electrically connected to an anode and a cathode. The emissive materials include compounds with the following structure: wherein at least one of R8 to R14 is phenyl or substituted phenyl, and/or at least two of R8 to R14 that are adjacent are part of a fluorenyl group. The emissive materials have enhanced electroluminescent efficiency and improved lifetime when incorporated into light emitting devices.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 10, 2020
    Inventors: Mark E. Thompson, Arnold Tamayo, Peter Djurovich
  • Patent number: 10818853
    Abstract: Organic light emitting devices incorporating a film of metal complex emitters that are oriented with their transition dipole moment vectors oriented parallel to the device substrate enhances the outcoupling and eliminate the need for micro-lens arrays, gratings, or other physical extraneous outcoupling methods.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 27, 2020
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Mark E. Thompson, Matthew J. Jurow, Peter I. Djurovich, Tobias D. Schmidt
  • Publication number: 20200308196
    Abstract: The present disclosure provides a compound of Formula I wherein M is a metal selected from the group consisting of Cu, Ag, and Au; T is a five-membered or six-membered heterocyclic ring, which is optionally substituted, wherein T includes a carbene carbon coordinated to M, or T is aromatic and includes a sp2 nitrogen coordinated to M; L is a group comprising a coordinating member selected from the group consisting of C, N, O, S, and P, wherein the coordinating member coordinates L to M; and Q1 and Q2 are each independently a linker, wherein the linker connects T to the coordinating member of L to form a macrocyclic ligand coordinated to M.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Inventors: Peter I. DJUROVICH, Mark E. THOMPSON
  • Publication number: 20200303660
    Abstract: There is disclosed squaraine compounds of formula I: wherein each of Y1 and Y2 is independently chosen from an optionally substituted amino group and an optionally substituted aryl group. Also described are organic optoelectronic devices comprising a Donor-Acceptor heterojunction that is formed from one or more of the squaraine compounds. A method of making the disclosed device, which may include one or more sublimation step for depositing said squaraine compound, is also disclosed.
    Type: Application
    Filed: June 24, 2019
    Publication date: September 24, 2020
    Applicants: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Mark E. THOMPSON, Stephen R. FORREST, Guodan WEI, Siyi WANG, Lincoln HALL, Viacheslav V. DIEV, Xin XIAO
  • Patent number: 10741775
    Abstract: The invention provides emissive materials and organic light emitting devices using the emissive materials in an emissive layer disposed between and electrically connected to an anode and a cathode. The emissive materials include compounds with the following structure: wherein at least one of R8 to R14 is phenyl or substituted phenyl, and/or at least two of R8 to R14 that are adjacent are part of a fluorenyl group. The emissive materials have enhanced electroluminescent efficiency and improved lifetime when incorporated into light emitting devices.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 11, 2020
    Assignee: The University of Southern California
    Inventors: Mark E. Thompson, Arnold Tamayo, Peter Djurovich
  • Publication number: 20200243772
    Abstract: A compound of Formula X wherein ring A is absent, or present and selected from a 5-membered or 6-membered, carbocyclic or heterocyclic ring, which is optionally substituted; ring B is absent, or present and selected from a 5-membered or 6-membered, carbocyclic or heterocyclic ring, which is optionally substituted; and at least one of ring A or ring B is present, and the hash line represents ring A fused to ring N—W1—W2 and ring B fused to ring N—W3—W4; W1, W2, W3, W4, W5, and W6 are independently selected from CR1 or N; Z is selected from CRZ or N; and Y is selected from a group consisting of C(R2)2, B(R2)2, Al(R2)2, Si(R2)2, and Ge(R2)2. An optoelectronic device selected from the group consisting of a photovoltaic device, a photodetector device, a photosensitive device, and an OLED, the optoelectronic device including an organic layer that comprises a compound of Formula X. A consumer product that includes the optoelectronic device.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 30, 2020
    Inventors: Mark E. THOMPSON, Abegail TADLE, Karim EL ROZ, Peter Ivan DJUROVICH, Daniel Sylvinson MUTHIAH RAVINSON, Jessica H. GOLDEN, Stuart W. SAWYER
  • Publication number: 20200243786
    Abstract: An OLED device comprises an anode and a cathode, and at least one graded emissive layer disposed between the anode and the cathode, the graded emissive layer comprising first and second materials, wherein a concentration of the first material increases continuously from an anode side of the graded emissive layer to a cathode side of the graded emissive layer, and a concentration of the second material decreases continuously from the anode side of the graded emissive layer to the cathode side of the graded emissive layer. An OLED device comprising a graded emissive layer and a hybrid white OLED device are also described.
    Type: Application
    Filed: January 17, 2020
    Publication date: July 30, 2020
    Inventors: Stephen R. Forrest, Chan Ho Soh, Mark E. Thompson, Muazzam Idris
  • Publication number: 20200239456
    Abstract: A compound of Formula X wherein ring A is absent, or present and selected from a 5-membered or 6-membered, carbocyclic or heterocyclic ring, which is optionally substituted; ring B is absent, or present and selected from a 5-membered or 6-membered, carbocyclic or heterocyclic ring, which is optionally substituted; and at least one of ring A or ring B is present, and the hash line represents ring A fused to ring N—W1—W3 and ring B fused to ring N—W4—W6; W1, W2, W3, W4, W5, and W6 are independently selected from CR1 or N; Z is selected from CRZ or N; and Y is selected from a group consisting of C(R2)2, B(R2)2, Al(R2)2, Si(R2)2, and Ge(R2)2. An optoelectronic device selected from the group consisting of a photovoltaic device, a photodetector device, a photosensitive device, and an OLED, the optoelectronic device including an organic layer that comprises a compound of Formula X. A consumer product that includes the optoelectronic device.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 30, 2020
    Inventors: Mark E. THOMPSON, Abegail TADLE, Karim EL ROZ, Peter Ivan DJUROVICH, Daniel Sylvinson MUTHIAH RAVINSON, Jessica H. GOLDEN, Stuart W. SAWYER
  • Publication number: 20200203638
    Abstract: Disclosed herein are organic photosensitive optoelectronic devices comprising acceptor and/or donor sensitizers to increase absorption and photoresponse of the photoactive layers of the devices. In particular, devices herein include at least one acceptor layer and at least one donor layer, wherein the acceptor layer may comprise a mixture of an acceptor material and at least one sensitizer, and the donor layer may comprise a mixture of a donor material and at least one sensitizer. Methods of fabricating the organic photosensitive optoelectronic devices are also disclosed.
    Type: Application
    Filed: July 30, 2019
    Publication date: June 25, 2020
    Inventors: Mark E. Thompson, Cong Trinh, Peter I. Djurovich, Sarah M. Conron
  • Patent number: 10629827
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: April 21, 2020
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul A. Burrows
  • Publication number: 20200106038
    Abstract: Arrangements and techniques for providing organic emissive layers are provided, in which the emissive layer includes a first dopant having a dissociative energy level. A second dopant in the emissive layer provides a solid state sink energy level, to which doubly excited excitons and/or polarons may transition instead of to the dissociative energy level, thereby decreasing the undesirable effects of transitions to the dissociative energy level.
    Type: Application
    Filed: November 15, 2019
    Publication date: April 2, 2020
    Inventors: Stephen R. FORREST, Michael SLOOTSKY, Mark E. THOMPSON
  • Publication number: 20200085995
    Abstract: The present disclosure describes, among other things, a thereto-responsive hydrogel comprising a PNIPAM copolymer having adhesive properties that are temperature dependent, as well as a device for administering the hydrogel, and methods for making and using the foregoing.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: John J. WHALEN, III, Niki BAYAT, Yi ZHANG, Paulo FALABELLA, Mark E. THOMPSON, Mark S. HUMAYUN
  • Publication number: 20200027931
    Abstract: Embodiments of the disclosed subject matter provide a wearable device that includes an organic light emitting diode (OLED) light source to output light having one peak wavelength from a single OLED emissive layer, and a first barrier layer that is disposed over or between the single OLED emissive layer and one or more down-conversion layers. One or more regions of the single OLED emissive layer are independently switchable and controllable so that the wearable device is configurable to output a plurality of wavelengths of light. One of the plurality of wavelengths of light that is output is near infrared light.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Michael HACK, Mark E. THOMPSON, Eric A. MARGULIES, Nicholas J. THOMPSON, Michael Stuart WEAVER
  • Patent number: 10512707
    Abstract: The present disclosure describes, among other things, a thermo-responsive hydrogel comprising a PNIPAM copolymer having adhesive properties that are temperature dependent, as well as a device for administering the hydrogel, and methods for making and using the foregoing.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: December 24, 2019
    Assignee: University of Southern California
    Inventors: John J. Whalen, III, Niki Bayat, Yi Zhang, Paulo Falabella, Mark E. Thompson, Mark S. Humayun
  • Patent number: 10483477
    Abstract: Arrangements and techniques for providing organic emissive layers are provided, in which the emissive layer includes a first dopant having a dissociative energy level. A second dopant in the emissive layer provides a solid state sink energy level, to which doubly excited excitons and/or polarons may transition instead of to the dissociative energy level, thereby decreasing the undesirable effects of transitions to the dissociative energy level.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 19, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, THE UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Stephen R. Forrest, Michael Slootsky, Mark E. Thompson
  • Publication number: 20190312206
    Abstract: The present invention provides for organometallic and organic dopants suitable for use in organic carrier transporting materials. Also provided are organic light emitting devices containing doped organic carrier transporting materials.
    Type: Application
    Filed: June 24, 2019
    Publication date: October 10, 2019
    Inventor: Mark E. Thompson
  • Patent number: 10406227
    Abstract: Methods and compositions modulate the activity of electrically excitable cells. Photovoltaic compounds which, upon exposure to light energy, increase or decrease the electrical activity of cells. These supplement and/or replace of vision based on the conversion of light energy to electrical energy within certain cells of the visual system. A “patch” or bridge to circumvent one or more defective, damaged, or diseased cells in the visual system. Additionally, in several embodiments, subjects with normal vision can benefit from the methods, compositions, systems, and/or devices disclosed herein as normal visual acuity can be heightened. The exposure induces an energy (e.g., a receipt of light energy, conversion to electrical energy, and passage of that electrical energy) from the photovoltaic compound to the cell, thereby altering the transmembrane potential of the cell and/or the opening of one or more ion channels, thereby modulating the activity of the electrically excitable cell.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 10, 2019
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Robert H. Chow, Mark S. Humayun, Harry B. Gray, Robert H. Grubbs, Dennis A. Dougherty, Mark E. Thompson, Lionel E. Cheruzel, Melanie A. Yen