Patents by Inventor Mark E. Twigg

Mark E. Twigg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210296524
    Abstract: A method of growing fully relaxed SiGeSn buffer layers on Si substrates to produce virtual substrates for the epitaxial growth of high quality GeSn films suitable for high performance infrared (IR) optoelectronic device technology directly integrated on silicon. Growing the SiGeSn virtual substrate uses a precisely decreasing growth temperature and Si flux and a precisely increasing Ge and Sn flux. The virtual substrates may have a slightly larger lattice constant than that of the target GeSn alloy to impose a precise degree of tensile strain resulting in a direct band gap for the target GeSn alloy.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 23, 2021
    Inventors: Glenn G. Jernigan, Mark E. Twigg, Nadeemullah A. Mahadik, Jill A. Nolde
  • Patent number: 8883538
    Abstract: A high power density photo-electronic and photo-voltaic material comprising a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein encapsulated inside a multi-wall carbon nanotube or nanotube array. The array can be on an electrode. The photosynthetic reaction center protein can be immobilized on the electrode surface and the protein molecules can have the same orientation. A method of making a high power density photo-electronic and photo-voltaic material comprising the steps of immobilizing a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein inside a carbon nanotube, wherein the immobilizing is by passive diffusion, wherein the immobilizing can include using an organic linker.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nikolai Lebedev, Scott A Trammell, Stanislav Tsoi, Mark E Twigg, Joel M Schnur
  • Publication number: 20130011954
    Abstract: A high power density photo-electronic and photo-voltaic material comprising a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein encapsulated inside a multi-wall carbon nanotube or nanotube array. The array can be on an electrode. The photosynthetic reaction center protein can be immobilized on the electrode surface and the protein molecules can have the same orientation. A method of making a high power density photo-electronic and photo-voltaic material comprising the steps of immobilizing a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein inside a carbon nanotube, wherein the immobilizing is by passive diffusion, wherein the immobilizing can include using an organic linker.
    Type: Application
    Filed: September 11, 2012
    Publication date: January 10, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nikolai Lebedev, Scott A. Trammell, Stanislav Tsoi, Mark E. Twigg, Joel M. Schnur
  • Patent number: 8294135
    Abstract: A high power density photo-electronic and photo-voltaic material comprising a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein encapsulated inside a multi-wall carbon nanotube or nanotube array. The array can be on an electrode. The photosynthetic reaction center protein can be immobilized on the electrode surface and the protein molecules can have the same orientation. A method of making a high power density photo-electronic and photo-voltaic material comprising the steps of immobilizing a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein inside a carbon nanotube, wherein the immobilizing is by passive diffusion, wherein the immobilizing can include using an organic linker.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: October 23, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nikolai Lebedev, Scott A Trammell, Stanislav Tsoi, Mark E Twigg, Joel M Schnur
  • Publication number: 20110073836
    Abstract: A high power density photo-electronic and photo-voltaic material comprising a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein encapsulated inside a multi-wall carbon nanotube or nanotube array. The array can be on an electrode. The photosynthetic reaction center protein can be immobilized on the electrode surface and the protein molecules can have the same orientation. A method of making a high power density photo-electronic and photo-voltaic material comprising the steps of immobilizing a bio-inorganic nanophotoelectronic material with a photosynthetic reaction center protein inside a carbon nanotube, wherein the immobilizing is by passive diffusion, wherein the immobilizing can include using an organic linker.
    Type: Application
    Filed: May 10, 2010
    Publication date: March 31, 2011
    Applicant: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Nikolai Lebedev, Scott A. Trammell, Stanislav Tsoi, Mark E. Twigg, Joel M. Schnur
  • Patent number: 7470989
    Abstract: This invention pertains to electronic/optoelectronic devices with reduced extended defects and to a method for making it. The device includes a substrate, a semiconductor active material deposited on said substrate, and electrical contacts. The semiconductor active material defines raised structures having atomically smooth surfaces. The method includes the steps of depositing a dielectric thin film mask material on a semiconductor substrate surface; patterning the mask material to form openings therein extending to the substrate surface; growing active material in the openings; removing the mask material to form the device with reduced extended defect density; and depositing electrical contacts on the device.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: December 30, 2008
    Assignee: The United States of America as represented by The Secretary of the Navy
    Inventors: Richard L Henry, Martin C Peckerar, Daniel D Koleske, Alma E Wickenden, Charles R Eddy, Jr., Ronald T Holm, Mark E Twigg
  • Patent number: 7198970
    Abstract: This invention pertains to electronic/optoelectronic devices with reduced extended defects and to a method for making it. The method includes the steps of depositing a dielectric thin film mask material on a semiconductor substrate surface; patterning the mask material to form openings therein extending to the substrate surface; growing active material in the openings; removing the mask material to form the device with reduced extended defect density; and depositing electrical contacts on the device.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: April 3, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Martin Peckerar, Richard Henry, Daniel Koleske, Alma Wickenden, Charles R. Eddy, Jr., Ronald Holm, Mark E. Twigg
  • Patent number: 6201342
    Abstract: An electron emitting device characterized by a monocrystalline substrate, a plurality of monocrystalline nanomesas or pillars disposed on the substrate in a spaced relationship and extending generally normally therefrom, monocrystalline self-assembled tips disposed on top of the nanomesas, and essentially atomically sharp apexes on the tips for field emitting electrons. A method for making the emitters is characterized by forming a gate electrode and gate electrode apertures before forming the tips on the nanomesas.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: March 13, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Karl D. Hobart, Francis J. Kub, Henry F. Gray, Mark E. Twigg, Phillip E. Thompson, Jonathan Shaw
  • Patent number: 6113451
    Abstract: An electron emitting device characterized by a monocrystalline substrate, a plurality of monocrystalline nanomesas or pillars disposed on the subste in a spaced relationship and extending generally normally therefrom, monocrystalline self-assembled tips disposed on top of the nanomesas, and essentially atomically sharp apexes on the tips for field emitting electrons. A method for making the emitters is characterized by forming a gate electrode and gate electrode apertures before forming the tips on the nanomesas.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: September 5, 2000
    Assignee: The United State of America as represented by the Secretary of the Navy
    Inventors: Karl D. Hobart, Francis J. Kub, Henry F. Gray, Mark E. Twigg, Phillip E. Thompson, Jonathan Shaw
  • Patent number: 5525538
    Abstract: An amorphous compound is changed to single crystal structure by heating at an elevated temperature in an inert atmosphere or in an atmosphere of a forming gas, the amorphous compound is composed of at least one Group III-A element of the Periodic Table and at least one Group V-A element, the amorphous compound having an excess over stoichiometric amount of at least one Group V-A element. The single crystal phase compound, intrinsically doped with at least one element from Group V-A, has the properties of high conductivity for a semiconductor without using any extrinsic dopant and a non-alloyed ohmic contact with a metal.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: June 11, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark E. Twigg, Mohammad Fatemi, Bijan Tadayon
  • Patent number: 5419785
    Abstract: An amorphous compound is changed to single crystal structure by heating at an elevated temperature in an inert atmosphere or in an atmosphere of a forming gas, the amorphous compound is composed of at least one Group III-A element of the Periodic Table and at least one Group V-A element, the amorphous compound having an excess over stoichiometric amount of at least one Group V-A element. The single crystal phase compound, intrinsically doped with at least one element from Group V-A, has the properties of high conductivity for a semiconductor without using any extrinsic dopant and a non-alloyed ohmic contact with a metal.
    Type: Grant
    Filed: April 12, 1994
    Date of Patent: May 30, 1995
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Mark E. Twigg, Mohammad Fatemi, Bijan Tadayon