Patents by Inventor Mark Edward Cardinal

Mark Edward Cardinal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11293403
    Abstract: A method for preventing catastrophic damage in a drivetrain of a wind turbine includes receiving, via a controller, a speed measurement of the generator of the drivetrain. The method also includes determining an electrical torque of a generator of the drivetrain of the wind turbine. The method further includes estimating, via the controller, a mechanical torque of the rotor as a function of at least one of the electrical torque and the speed measurement of the generator. Further, the method includes comparing, via the controller, the estimated mechanical torque to an implausible torque threshold, wherein torque values above the implausible torque threshold speed values greater that the implausible speed threshold. Moreover, the method includes implementing, via the controller, a control action for the wind turbine when the estimated mechanical torque exceeds the implausible torque threshold.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: April 5, 2022
    Assignee: General Electric Company
    Inventors: Mark Edward Cardinal, Drake Joseph Viscome, Mathew Doyle Angel
  • Publication number: 20200325874
    Abstract: A method for preventing catastrophic damage in a drivetrain of a wind turbine includes receiving, via a controller, a speed measurement of the generator of the drivetrain. The method also includes determining an electrical torque of a generator of the drivetrain of the wind turbine. The method further includes estimating, via the controller, a mechanical torque of the rotor as a function of at least one of the electrical torque and the speed measurement of the generator. Further, the method includes comparing, via the controller, the estimated mechanical torque to an implausible torque threshold, wherein torque values above the implausible torque threshold speed values greater that the implausible speed threshold. Moreover, the method includes implementing, via the controller, a control action for the wind turbine when the estimated mechanical torque exceeds the implausible torque threshold.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 15, 2020
    Inventors: Mark Edward Cardinal, Drake Joseph Viscome, Mathew Doyle Angel
  • Patent number: 10781792
    Abstract: The present disclosure is directed to a system for controlling a pitch angle of a rotor blade of a wind turbine. The system includes a pitch adjustment mechanism for adjusting the pitch angle of the rotor blade and a controller communicatively coupled to the pitch adjustment mechanism. The controller is configured to determine a wind asymmetry parameter based on an operating parameter of the wind turbine. The controller is also configured to determine first and second signal components of the wind asymmetry parameter, which are respectively indicative of a maximum load on a first wind turbine component and fatigue on a second wind turbine component. The controller is also configured to calculate a wear parameter based on the first and second signal components and initiate an adjustment of the pitch angle of the rotor blade based on the wear parameter.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: September 22, 2020
    Assignee: General Electric Company
    Inventors: Prashanth Reddy Vaddi, Mark Edward Cardinal, Robert Peter Slack
  • Patent number: 10634121
    Abstract: A method for operating a wind turbine during partial load operation includes determining a power output of the wind turbine. The method also includes determining whether the power output is below a rated power of the wind turbine. If the power output is at the rated power, the method includes maintaining a speed set point of the wind turbine equal to a rated speed set point. However, if the power output is below the rated power, then the method includes varying, via a controller, the speed set point of the wind turbine as a function of a torque of the wind turbine in a non-monotonic torque-speed relationship.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 28, 2020
    Assignee: General Electric Company
    Inventors: Ryan Andrew Risdon, Jignesh Govindlal Gandhi, Mark Edward Cardinal, Govardhan Ganireddy, Arne Koerber
  • Patent number: 10436181
    Abstract: The present disclosure is directed to a method for determining an estimated rotor shaft position of a rotor shaft of a wind turbine. The method includes generating, with a rotor shaft position sensor, a measured rotor shaft position signal associated with a measured rotor shaft position of the rotor shaft. The method also includes generating, with a plurality of accelerometers positioned in an axisymmetric arrangement, a plurality of rotor hub acceleration signals associated with a plurality of rotor hub accelerations of a rotor hub coupled to the rotor shaft. The method further includes determining, with a controller, a phase adjustment based on one of the plurality of rotor hub acceleration signals or a predetermined correction value. Furthermore, the method includes adjusting, with the controller, the measured rotor shaft position by the phase adjustment to determine the estimated rotor shaft position of the rotor.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 8, 2019
    Assignee: General Electric Company
    Inventors: Robert Peter Slack, Mark Edward Cardinal
  • Patent number: 10371122
    Abstract: The present subject matter is directed to a system and method for improving speed control of a pitch drive system of a wind turbine. In one embodiment, the pitch drive system includes a direct current (DC) motor having an armature and a series-field winding, a battery assembly having a positive terminal and a negative terminal, and a current-controlling device configured in series between the positive terminal of the battery assembly and the series-field winding. The battery assembly is configured to supply power to the pitch drive system and the current-controlling device is configured to supply current to the series-field winding so as to ensure a field flux does not equal zero. Thus, the current-controlling device has the effect of limiting the maximum speed of the DC motor.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: August 6, 2019
    Assignee: General Electric Company
    Inventors: Jeffrey Alan Melius, Mark Edward Cardinal, Joseph Lawrence Chacon
  • Publication number: 20180363628
    Abstract: A method for operating a wind turbine during partial load operation includes determining a power output of the wind turbine. The method also includes determining whether the power output is below a rated power of the wind turbine. If the power output is at the rated power, the method includes maintaining a speed set point of the wind turbine equal to a rated speed set point. However, if the power output is below the rated power, then the method includes varying, via a controller, the speed set point of the wind turbine as a function of a torque of the wind turbine in a non-monotonic torque-speed relationship.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Ryan Andrew Risdon, Jignesh Govindlal Gandhi, Mark Edward Cardinal, Govardhan Ganireddy, Arne Koerber
  • Publication number: 20180335016
    Abstract: The present disclosure is directed to a system for controlling a pitch angle of a rotor blade of a wind turbine. The system includes a pitch adjustment mechanism for adjusting the pitch angle of the rotor blade and a controller communicatively coupled to the pitch adjustment mechanism. The controller is configured to determine a wind asymmetry parameter based on an operating parameter of the wind turbine. The controller is also configured to determine first and second signal components of the wind asymmetry parameter, which are respectively indicative of a maximum load on a first wind turbine component and fatigue on a second wind turbine component. The controller is also configured to calculate a wear parameter based on the first and second signal components and initiate an adjustment of the pitch angle of the rotor blade based on the wear parameter.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 22, 2018
    Inventors: Prashanth Reddy VADDI, Mark Edward CARDINAL, Robert Peter SLACK
  • Publication number: 20180230970
    Abstract: The present disclosure is directed to a method for determining an estimated rotor shaft position of a rotor shaft of a wind turbine. The method includes generating, with a rotor shaft position sensor, a measured rotor shaft position signal associated with a measured rotor shaft position of the rotor shaft. The method also includes generating, with a plurality of accelerometers positioned in an axisymmetric arrangement, a plurality of rotor hub acceleration signals associated with a plurality of rotor hub accelerations of a rotor hub coupled to the rotor shaft. The method further includes determining, with a controller, a phase adjustment based on one of the plurality of rotor hub acceleration signals or a predetermined correction value. Furthermore, the method includes adjusting, with the controller, the measured rotor shaft position by the phase adjustment to determine the estimated rotor shaft position of the rotor.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 16, 2018
    Inventors: Robert Peter Slack, Mark Edward Cardinal
  • Patent number: 10027118
    Abstract: The present disclosure is directed to a system and method for balancing reactive power loading between multiple renewable energy power systems coupled to a power grid at a point of regulation (POR). The method includes determining a voltage error based on a voltage reference and a measured voltage at the POR. The method also includes measuring at least one operating condition from each of the power systems. Further, the method includes determining a per unit actual reactive power for each of the power systems based on at least one of the actual operating conditions and determining a per unit average reactive power from the power systems based on at least one of the actual operating conditions. Thus, the method also includes determining a voltage reference command for each of the power systems as a function of the voltage error, the per unit reactive power, and/or the per unit average reactive power.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: July 17, 2018
    Assignee: General Electric Company
    Inventors: Enno Ubben, Alfredo Sebastian Achilles, Mark Edward Cardinal, Rajni Kant Burra, Matthew Paul Richwine, Patrick Djan-Sampson
  • Patent number: 10012213
    Abstract: The present disclosure is directed to a system and method for controlling and/or upgrading aftermarket multivendor wind turbines. The system includes a turbine controller configured to control operations of the wind turbine, a safety device configured to provide a signal indicative of a health status of the safety device, and a secondary controller inserted between the safety device and the turbine controller. The secondary controller is configured to receive the signal from the safety device over a communication interface. As such, if the signal indicates a normal health status, the secondary controller is configured to send the signal to the turbine controller, i.e. maintain normal operation. Alternatively, if the signal indicates a poor health status, the secondary controller is configured to adjust the signal based at least in part on a signal bias to an adjusted signal and to provide the adjusted signal to the turbine controller.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: July 3, 2018
    Assignee: General Electric Company
    Inventors: Joseph Lawrence Chacon, William Earl Fish, Noah Pennington, Mark Edward Cardinal
  • Patent number: 9920743
    Abstract: A wind turbine includes wind turbine blades, a wind turbine rotor coupled to the wind turbine blades, a wind turbine generator coupled to the wind turbine rotor, a wind turbine converter coupled to the wind turbine generator, a controllable brake comprising one or more sources of controllable rotor torque adjustment for providing a first level of torque adjustment, a discrete brake for more coarsely providing a second level of torque adjustment, and a controller programmed for responding to a deceleration event by determining a required torque adjustment for braking, determining a sequence of applying the controllable brake and the discrete brake for driving a combination of the first and second levels of torque adjustment towards the required torque adjustment, and providing control signals for decelerating the wind turbine.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: March 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Pranav Agarwal, Govardhan Ganireddy, Mark Edward Cardinal, Venkata Krishna Vadlamudi
  • Patent number: 9915243
    Abstract: A system for automatic generation control in a wind farm is provided. The system includes a wind farm controller for controlling the plurality of energy storage elements. The wind farm controller receives an automatic generation control set point from an independent system operator, generates a farm-level storage power set point for the wind farm based on the automatic generation control set point, generates individual storage power set points for the plurality of energy storage elements based on states of charge of the respective energy storage elements, and controls the plurality of energy storage elements based on the individual storage power set points for dispatching storage power to perform automatic generation control.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 13, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Deepak Raj Sagi, Mark Edward Cardinal, Avijit Saha, Rajni Kant Burra, Govardhan Ganireddy
  • Publication number: 20170338652
    Abstract: The present disclosure is directed to a system and method for balancing reactive power loading between multiple renewable energy power systems coupled to a power grid at a point of regulation (POR). The method includes determining a voltage error based on a voltage reference and a measured voltage at the POR. The method also includes measuring at least one operating condition from each of the power systems. Further, the method includes determining a per unit actual reactive power for each of the power systems based on at least one of the actual operating conditions and determining a per unit average reactive power from the power systems based on at least one of the actual operating conditions. Thus, the method also includes determining a voltage reference command for each of the power systems as a function of the voltage error, the per unit reactive power, and/or the per unit average reactive power.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: Enno Ubben, Alfredo Sebastian Achilles, Mark Edward Cardinal, Rajni Kant Burra, Matthew Paul Richwine, Patrick Djan-Sampson
  • Patent number: 9822766
    Abstract: A method for operating a wind farm is provided. The wind farm includes at least two groups of wind turbines, each of the at least two groups of wind turbines includes at least one wind turbine of the wind farm, each of the wind turbines of the wind farm belonging to one of the at least two groups of wind turbines. The method includes determining a power setpoint for the wind farm, determining a group curtailment setpoint for each of at least two groups of wind turbines, determining a power production value of each of the at least two groups of wind turbines, determining for each of the at least two groups of wind turbines a power reference value using the respective group curtailment setpoint and the respective power production value, determine for each of the at least two groups of wind turbines a group power setpoint which is proportional to the respective power reference values, and operating the at least two groups of wind turbines in accordance with the respective group power setpoint.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: November 21, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Mark Edward Cardinal, Kuruvilla Pallathusseril Kuruvilla, Enno Ubben
  • Publication number: 20170328343
    Abstract: The present subject matter is directed to a system and method for improving speed control of a pitch drive system of a wind turbine. In one embodiment, the pitch drive system includes a direct current (DC) motor having an armature and a series-field winding, a battery assembly having a positive terminal and a negative terminal, and a current-controlling device configured in series between the positive terminal of the battery assembly and the series-field winding. The battery assembly is configured to supply power to the pitch drive system and the current-controlling device is configured to supply current to the series-field winding so as to ensure a field flux does not equal zero. Thus, the current-controlling device has the effect of limiting the maximum speed of the DC motor.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 16, 2017
    Inventors: Jeffrey Alan Melius, Mark Edward Cardinal, Joseph Lawrence Chacon
  • Publication number: 20170226987
    Abstract: The present disclosure is directed to a system and method for controlling and/or upgrading aftermarket multivendor wind turbines. The system includes a turbine controller configured to control operations of the wind turbine, a safety device configured to provide a signal indicative of a health status of the safety device, and a secondary controller inserted between the safety device and the turbine controller. The secondary controller is configured to receive the signal from the safety device over a communication interface. As such, if the signal indicates a normal health status, the secondary controller is configured to send the signal to the turbine controller, i.e. maintain normal operation. Alternatively, if the signal indicates a poor health status, the secondary controller is configured to adjust the signal based at least in part on a signal bias to an adjusted signal and to provide the adjusted signal to the turbine controller.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Joseph Lawrence Chacon, William Earl Fish, Noah Pennington, Mark Edward Cardinal
  • Patent number: 9726148
    Abstract: The present subject matter is directed to a system and method for improving speed control of a pitch drive system of a wind turbine. In one embodiment, the pitch drive system includes a direct current (DC) motor having an armature and a series-field winding, a battery assembly having a positive terminal and a negative terminal, and a current-controlling device configured in series between the positive terminal of the battery assembly and the series-field winding. The battery assembly is configured to supply power to the pitch drive system and the current-controlling device is configured to supply current to the series-field winding so as to ensure a field flux does not equal zero. Thus, the current-controlling device has the effect of limiting the maximum speed of the DC motor.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 8, 2017
    Assignee: General Electric Company
    Inventors: Jeffrey Alan Melius, Mark Edward Cardinal, Joseph Lawrence Chacon
  • Patent number: 9709037
    Abstract: A method for controlling a wind farm including a plurality of wind turbines is provided. The method includes computing an error between a farm-level base point power and a measured wind farm power, generating an aggregated farm-level active power set point for the wind farm based on the error and a frequency response set point, generating aggregated turbine-level active power set points based on the aggregated farm-level active power set point, transmitting the aggregated turbine-level active power set points, determining aero power set points and storage power set points for the respective wind turbines and energy storage elements of the respective wind turbines from the aggregated turbine-level active power set points, and controlling the plurality of wind turbines for delivering aero power based on the respective aero power set points and controlling the energy storage elements to provide storage power based on the respective storage power set points.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 18, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Deepak Raj Sagi, Avijit Saha, Govardhan Ganireddy, Mark Edward Cardinal, Rajni Kant Burra
  • Patent number: 9651443
    Abstract: The present disclosure is directed to a system and method for protecting a rotary machine in a high noise environment. In one embodiment, the method includes a step of measuring a vibration signal during operation of the rotary machine. Another step includes modulating the vibration signal at a desired frequency to generate a modulated signal having a direct current (DC) value. The desired frequency varies as a function of an operational parameter of the rotary machine. The method also includes a step of filtering the modulated signal via one or more low-pass filters. Another step includes comparing an amplitude of the filtered signal to a threshold amplitude for one or more components of the rotary machine. The threshold amplitude is indicative of an imbalance within one or more components of the rotary machine. The rotary machine is then operated based on the comparison so as to protect the rotary machine from damage caused by the imbalance within the one or more components of the rotary machine.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 16, 2017
    Assignee: General Electric Company
    Inventors: Mark Edward Cardinal, Jignesh Govindlal Gandhi, Robert J. Dewey, Ryan Spencer Close, Thomas Ernst Dinjus, Bernardo Adrian Movischoff, David Charles Korim