Patents by Inventor Mark Edward Halpern

Mark Edward Halpern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140336724
    Abstract: The present invention relates to retinal prostheses, and in particular to the transfer of electrical power and data from outside of the human body to such a prosthesis. The retinal prosthesis comprises: A retinal electrode array implanted in the eye to stimulate the retina. A receiving coil implanted sub-sclerally to inductively receive power or data signals, or both. An electrical connection between the implanted receiving coil and the implanted retinal electrode array. Wherein the receiving coil is flexible and able to conform to scleral curvature, when it is implanted. And wherein power or data signals, or both, received by the receiving coil from a remote transmitting coil are automatically provided to the electrode array. According to a second aspect, the present invention provides a method for implanting a retinal prosthesis. In a further aspect the present invention further provides an ocular implant.
    Type: Application
    Filed: May 27, 2014
    Publication date: November 13, 2014
    Inventors: David Chee Keong Ng, Shun Bai, Efstratios Skafidas, Penelope Allen, Chris Williams, Hamish Meffin, Mark McCombe, Mark Edward Halpern, Clive Steward Boyd
  • Patent number: 8588931
    Abstract: Neural stimulation is effected by a stimulus current pulse. The current pulse is initially of an amplitude to rapidly induce a desired electrode voltage, and is subsequently of reduced amplitude to control electrode voltage in a desired manner. This can effect a reduced peak electrode voltage while delivering a given amount of charge. Optimization of the current pulse may further involve parameterising an electrode current waveform as a sequence of piecewise constant steps, each step having substantially the same duration as all other steps and each step having a calculatable amplitude, and identifying electrode-tissue interface (ETI) parameters. For each step of the pulse, the respective step amplitude is then calculated using the identified ETI parameters to optimise the electrode voltage.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: November 19, 2013
    Assignees: National ICT Australia Limited, The Bionics Institute of Australia
    Inventors: Mark Edward Halpern, James Bernard Fallon
  • Publication number: 20120116507
    Abstract: The present invention relates to retinal prostheses, and in particular to the transfer of electrical power and data from outside of the human body to such a prosthesis. The retinal prosthesis comprises: A retinal electrode array implanted in the eye to stimulate the retina. A receiving coil implanted sub-sclerally to inductively receive power or data signals, or both. An electrical connection between the implanted receiving coil and the implanted retinal electrode array. Wherein the receiving coil is flexible and able to conform to scleral curvature, when it is implanted. And wherein power or data signals, or both, received by the receiving coil from a remote transmitting coil are automatically provided to the electrode array. According to a second aspect, the present invention provides a method for implanting a retinal prosthesis. In a further aspect the present invention further provides an ocular implant.
    Type: Application
    Filed: April 23, 2010
    Publication date: May 10, 2012
    Inventors: David Chee Keong Ng, Shun Bai, Efstratios Skafidas, Penelope Allen, Chris Williams, Hamish Meffin, Mark McCombe, Mark Edward Halpern, Clive Steward Boyd
  • Publication number: 20110071600
    Abstract: Neural stimulation is effected by a stimulus current pulse. The current pulse is initially of an amplitude to rapidly induce a desired electrode voltage, and is subsequently of reduced amplitude to control electrode voltage in a desired manner. This can effect a reduced peak electrode voltage while delivering a given amount of charge. Optimisation of the current pulse may further involve parameterising an electrode current waveform as a sequence of piecewise constant steps, each step having substantially the same duration as all other steps and each step having a calculatable amplitude, and identifying electrode-tissue interface (ETI) parameters. For each step of the pulse, the respective step amplitude is then calculated using the identified ETI parameters to optimise the electrode voltage.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 24, 2011
    Inventors: Mark Edward Halpern, James Bernard Fallon