Patents by Inventor Mark Erik Easley

Mark Erik Easley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081843
    Abstract: Systems, techniques, and devices are described that may be used in a minimally invasive bone realignment procedure. In some examples, a method of performing a minimally invasive metatarsal correction procedure involves using a bone preparation guide having a guide surface with a length less than a diameter of a bone to be cut using the guide surface. The clinician can guide a bone preparation instrument along the guide surface and angle the bone preparation instrument beyond one or both ends of the guide surface to cut the end of the underlying bone beyond one or both of the ends.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: Adriaan Kuyler, Paul Dayton, Mark Erik Easley, William T. DeCarbo, Daniel J. Hatch, Jody McAleer, Robert D. Santrock, W. Bret Smith, Sean F. Scanlan, Jason May, Michael Stedham
  • Publication number: 20240081817
    Abstract: An orthopedic implant system can be used to fixate two bones (e.g., to portions of a single bone) relative to each other during a surgical procedure. In some configurations, the implant system includes a staple having at least two legs separated by a bridge. The staple can include at least two couplings on either side of the bridge accessible through a top surface of the staple connectable to two corresponding coupling shafts. The coupling shafts can attach through the top surface of the staple without extending below an underside of the staple. The coupling shafts can be used to bias the at least two legs of the staple away from each other for insertion into holes formed into two bones. By attaching the coupling shafts through the top of the staple, the staple can be inserted flush with the two bones before releasing the shafts.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: W. Bret Smith, Madeline Lindemann, Bryan Wilcox, Sean F. Scanlan, Jason May, Adriaan Kuyler, Robert D. Santrock, Mark Erik Easley
  • Publication number: 20240081816
    Abstract: An orthopedic implant system can be used to fixate two bones (e.g., to portions of a single bone) relative to each other during a surgical procedure. In some configurations, the implant system includes a staple having at least two legs separated by a bridge. The staple can include at least two couplings on either side of the bridge accessible through a top surface of the staple connectable to two corresponding coupling shafts. The coupling shafts can attach through the top surface of the staple without extending below an underside of the staple. The coupling shafts can be used to bias the at least two legs of the staple away from each other for insertion into holes formed into two bones. By attaching the coupling shafts through the top of the staple, the staple can be inserted flush with the two bones before releasing the shafts.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: W. Bret Smith, Madeline Lindemann, Bryan Wilcox, Sean F. Scanlan, Jason May, Adriaan Kuyler, Robert D. Santrock, Mark Erik Easley
  • Publication number: 20240082015
    Abstract: An orthopedic implant system can be used to fixate two vertebral bones relative to each other during a surgical procedure. In some configurations, the implant system includes a staple having at least two legs separated by a bridge. The staple can include at least two couplings on either side of the bridge accessible through a top surface of the staple connectable to two corresponding coupling shafts. The coupling shafts can attach through the top surface of the staple without extending below an underside of the staple. The coupling shafts can be used to bias the at least two legs of the staple away from each other for insertion into holes formed into two bones. By attaching the coupling shafts through the top of the staple, the staple can be inserted flush with the two bones before releasing the shafts.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: W. Bret Smith, Madeline Lindemann, Bryan Wilcox, Sean F. Scanlan, Jason May, Adriaan Kuyler, Robert D. Santrock, Mark Erik Easley
  • Publication number: 20230263540
    Abstract: An orthopedic cutting instrument can be used to cut and release soft tissue to mobilize a bone for subsequent realignment of the bone. In some examples, the cutting instrument is configured with a handle and a cutting head. The cutting head has multiple cutting surfaces, such as a lead cutting surface and side cutting surfaces extending angularly away from the lead cutting surface. A mirror set of cutting surfaces may be provided on the opposite side of the cutting head. The cutting surfaces may be arranged to allow controlling cutting of soft tissue while limiting inadvertent deep penetration of the cutting instrument. In addition, the cutting surfaces may be arranged to allow back-and-forth cutting movement of the cutting head, which can be useful when working in a tight joint space.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Inventors: Paul Dayton, William T. DeCarbo, Jody McAleer, Robert D. Santrock, Mark Erik Easley, Adriaan Kuyler, Bryan Wilcox
  • Publication number: 20230263557
    Abstract: A bone plate can be used to fixate one or more bones. In some examples, a bone plate has first, second, third, and fourth fixation holes. The first and second fixation holes may be located in a distal body region of the bone plate and co-linear with a bridge central longitudinal axis. The third and fourth fixation holes may be located in a proximal body region of the bone plate, with the third fixation hole co-linear with the bridge central longitudinal axis and the fourth fixation hole offset from the bridge central longitudinal axis in a first plane by a first angle and in a second plane by a second angle.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Inventors: Daniel J. Hatch, Paul Dayton, William T. DeCarbo, Jody McAleer, Robert D. Santrock, W. Bret Smith, Mark Erik Easley, Madeline Lindemann, Jason May, Sean F. Scanlan, John T. Treace
  • Publication number: 20230263543
    Abstract: Instruments and techniques can be used to release a first metatarsal for realignment. In some implementations, a techniques involves surgically accessing a sesamoidal ligament in a foot of a patient and advancing a guiding projection of a cutting instrument under the sesamoidal ligament. This can capture the sesamoidal ligament between the guiding projection of the cutting instrument and a cutting surface of the cutting instrument that is recessed relative to a distal end of the guiding projection. The techniques further involves cutting the sesamoidal ligament with the cutting surface of the cutting instrument.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Inventors: Paul Dayton, William T. DeCarbo, Daniel J. Hatch, Jody McAleer, Robert D. Santrock, W. Bret Smith, Mark Erik Easley, Bryan Wilcox
  • Publication number: 20230263536
    Abstract: A variety of surgical procedures may be performed on the bones of the foot, such as on one or more lesser metatarsals of the foot positioned laterally of the first metatarsal. For example, a surgical procedure may involve cutting an end of one or both of a second metatarsal and an intermediate cuneiform and/or cutting an end of one or both of a third metatarsal and a lateral cuneiform. The tarsometatarsal joints defined be one or both sets of bones may be cut to treat an arthritic joint, metatarsus adductus, and/or other clinical condition. In any case, various surgical instruments can be utilized during a procedure to help increase the accuracy and repeatability of the procedure patient-to-patient, improving overall patient outcomes. For example, one or more cut guides, compressor-distractor devices, and/or other instruments designed to accommodate the specific anatomical conditions of the procedure being performed may be utilized during procedure.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Adriaan Kuyler, Sean F. Scanlan, Paul Dayton, William T. DeCarbo, Mark Erik Easley, Daniel J. Hatch, Jody McAleer, Robert D. Santrock, W. Bret Smith