Patents by Inventor Mark F. Davis

Mark F. Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10460740
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 29, 2019
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20190327575
    Abstract: A system and method of modifying a binaural signal using headtracking information. The system calculates a delay, a first filter response, and a second filter response, and applies these to the left and right components of the binaural signal according to the headtracking information. The system may also apply headtracking to parametric binaural signals. In this manner, headtracking may be applied to pre-rendered binaural audio.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 24, 2019
    Applicant: DOLBY LABORATORIES LICENSING CORPORATION
    Inventors: C. Phillip Brown, Joshua Brandon Lando, Mark F. Davis, Alan J. Seefeldt, David Matthew Cooper, Dirk Jeroen Breebaart, Rhonda Wilson
  • Patent number: 10403297
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 3, 2019
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 10362431
    Abstract: A method of encoding channel or object based input audio for playback, the method including the steps of: (a) initially rendering the channel or object based input audio into an initial output presentation; (b) determining an estimate of the dominant audio component from the channel or object based input audio and determining a series of dominant audio component weighting factors for mapping the initial output presentation into the dominant audio component; (c) determining an estimate of the dominant audio component direction or position; and (d) encoding the initial output presentation, the dominant audio component weighting factors, the dominant audio component direction or position as the encoded signal for playback.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 23, 2019
    Assignees: Dolby Laboratories Licensing Corporation, Dolby International AB
    Inventors: Dirk Jeroen Breebaart, David Matthew Cooper, Mark F. Davis, David S. McGrath, Kristofer Kjoerling, Harald Mundt, Rhonda J. Wilson
  • Publication number: 20190147898
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: December 19, 2018
    Publication date: May 16, 2019
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20190122683
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: December 19, 2018
    Publication date: April 25, 2019
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 10269364
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: April 23, 2019
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 10118124
    Abstract: A method of processing a mixture of heated vapors, at least two of which substantially differ in polarity from each other, the method comprising directing said mixture of heated vapors at a temperature of at least 150° C. through a hydrophobic or hydrophilic mesoporous membrane comprising a mesoporous coating of hydrophobized or hydrophilized metal oxide nanoparticles, respectively, wherein the hydrophobic mesoporous membrane permits passage of one or more hydrophobic heated vapors and blocks passage of one or more hydrophilic heated vapors, and wherein the hydrophilic mesoporous membrane permits passage of one or more hydrophilic heated vapors and blocks passage of one or more hydrophobic heated vapors. The method is particularly directed to embodiments where the heated vapors emanate from a pyrolysis process. An apparatus for achieving the above-described method is also described.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: November 6, 2018
    Assignees: UT-BATTELLE, LLC, ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Michael Z. Hu, Chaiwat Engtrakul, Brian L. Bischoff, Mark F. Davis
  • Patent number: 10104488
    Abstract: M audio input channels, each associated with a spatial direction, are translated to N audio output channels, each associated with a spatial direction, wherein M and N are positive whole integers, M is three or more, and N is three or more, by deriving the N audio output channels from the M audio input channels, wherein one or more of the M audio input channels is associated with a spatial direction other than a spatial direction with which any of the N audio output channels is associated, and at least one of the one or more of the M audio input channels is mapped to a respective set of at least three of the N output channels. At least three output channels of a set may be associated with contiguous spatial directions.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 16, 2018
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20170365268
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 9779745
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: October 3, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 9715882
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: July 25, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 9704499
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: July 11, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 9697842
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: July 4, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 9691404
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 27, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Patent number: 9691405
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 27, 2017
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20170178651
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20170178652
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20170178650
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel. The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis
  • Publication number: 20170178653
    Abstract: A method performed in an audio decoder for decoding M encoded audio channels representing N audio channels is disclosed. The method includes receiving a bitstream containing the M encoded audio channels and a set of spatial parameters, decoding the M encoded audio channels, and extracting the set of spatial parameters from the bitstream. The method also includes analyzing the M audio channels to detect a location of a transient, decorrelating the M audio channels, and deriving N audio channels from the M audio channels and the set of spatial parameters. A first decorrelation technique is applied to a first subset of each audio channel and a second decorrelation technique is applied to a second subset of each audio channel The first decorrelation technique represents a first mode of operation of a decorrelator, and the second decorrelation technique represents a second mode of operation of the decorrelator.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Applicant: Dolby Laboratories Licensing Corporation
    Inventor: Mark F. Davis