Patents by Inventor Mark Fery

Mark Fery has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7897437
    Abstract: Layered interface materials described herein include at least one pulse-plated thermally conductive material, such as an interconnect material, and at least one heat spreader component coupled to the at least one pulse-plated thermally conductive material. A plated layered interface material having a migration component is also described herein and includes at least one pulse-plated thermally conductive material; and at least one heat spreader component, wherein the migration component of the plated layered interface material is reduced by at least 51% as compared to the migration component of a reference layered interface material. Another layered interface material described herein includes: a) a thermal conductor; b) a protective layer; c) a layer of material to accept solder and prevent the formation of oxides; and d) a layer of solder material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Honeywell International Inc.
    Inventors: Mark Fery, Jai Subramanian
  • Patent number: 7678243
    Abstract: An improved plating system comprises a plurality of non-electrically conductive shields forming an elongated upper channel and an elongated lower channel, the upper and lower channels each having a width less than or equal to one inch; a plurality of part holding clamps electrically coupled to a power source and positioned within the upper channel or the lower channel; a plating solution sparger comprising a series of inlets oriented to direct any plating solution flowing through the inlets into the lower channel and towards the upper channel; and a plurality of anodes positioned outside and along the length of the upper and lower channels.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: March 16, 2010
    Assignee: Honeywell International Inc.
    Inventors: Paul Silinger, Mark Fery
  • Publication number: 20090294115
    Abstract: A thermal transfer material is described herein that includes: a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material, and at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component. Methods of forming layered thermal interface materials and thermal transfer materials include: a) providing a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material; b) providing at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component; and c) depositing the at least one solder material onto the bottom surface of the heat spreader component.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 3, 2009
    Applicant: Honeywell International Inc.
    Inventors: Mark Fery, Nancy Dean
  • Publication number: 20080176095
    Abstract: Layered interface materials described herein include at least one pulse-plated thermally conductive material, such as an interconnect material, and at least one heat spreader component coupled to the at least one pulse-plated thermally conductive material. A plated layered interface material having a migration component is also described herein and includes at least one pulse-plated thermally conductive material; and at least one heat spreader component, wherein the migration component of the plated layered interface material is reduced by at least 51% as compared to the migration component of a reference layered interface material. Another layered interface material described herein includes: a) a thermal conductor; b) a protective layer; c) a layer of material to accept solder and prevent the formation of oxides; and d) a layer of solder material.
    Type: Application
    Filed: December 20, 2007
    Publication date: July 24, 2008
    Inventors: Mark Fery, Jai Subramanian
  • Patent number: 7378730
    Abstract: Layered interface materials described herein include at least one pulse-plated thermally conductive material, such as an interconnect material, and at least one heat spreader component coupled to the at least one pulse-plated thermally conductive material. A plated layered interface material having a migration component is also described herein and includes at least one pulse-plated thermally conductive material; and at least one heat spreader component, wherein the migration component of the plated layered interface material is reduced by at least 51% as compared to the migration component of a reference layered interface material. Another layered interface material described herein includes: a) a thermal conductor; b) a protective layer; c) a layer of material accept solder and prevent the formation of oxides; and d) a layer of solder material.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: May 27, 2008
    Assignee: Honeywell International Inc.
    Inventors: Mark Fery, Jai Subramanian
  • Publication number: 20080029882
    Abstract: A thermal transfer material is described herein that includes: a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material, and at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component. Methods of forming layered thermal interface materials and thermal transfer materials include: a) providing a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material; b) providing at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component; and c) depositing the at least one solder material onto the bottom surface of the heat spreader component.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 7, 2008
    Applicant: Honeywell International Inc.
    Inventors: Mark Fery, Nancy Dean
  • Patent number: 7256491
    Abstract: A thermal transfer material is described herein that includes: a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material, and at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component. Methods of forming layered thermal interface materials and thermal transfer materials include: a) providing a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material; b) providing at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component; and c) depositing the at least one solder material onto the bottom surface of the heat spreader component.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: August 14, 2007
    Assignee: Honeywell International Inc.
    Inventors: Mark Fery, Nancy Dean
  • Publication number: 20070013054
    Abstract: A thermally conductive material that includes an alloy which includes indium, zinc, magnesium or a combination thereof is described herein. Also, a semiconductor package comprising a thermal interface material which includes solder and particles dispersed throughout the solder, the particles being of thermal conductivity greater than or equal to about 80 W/m-K is described herein. In one described embodiment, a semiconductor package includes a thermal interface material which includes at least one lanthanide element. In yet another embodiment disclosed herein, a solder preform construction includes a solder and a structure within the solder, the solder being of a first composition and the structure being of a second composition which has a lower melting point than the first composition.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 18, 2007
    Inventors: Brian Ruchert, Martin Weiser, Mark Fery, Nancy Dean, John Lalena
  • Publication number: 20060237838
    Abstract: Layered interface materials described herein include at least one pulse-plated thermally conductive material, such as an interconnect material, and at least one heat spreader component coupled to the at least one pulse-plated thermally conductive material. A plated layered interface material having a migration component is also described herein and includes at least one pulse-plated thermally conductive material; and at least one heat spreader component, wherein the migration component of the plated layered interface material is reduced by at least 51% as compared to the migration component of a reference layered interface material. Another layered interface material described herein includes: a) a thermal conductor; b) a protective layer; c) a layer of material accept solder and prevent the formation of oxides; and d) a layer of solder material.
    Type: Application
    Filed: February 13, 2004
    Publication date: October 26, 2006
    Inventors: Mark Fery, Jai Subramanian
  • Publication number: 20060151873
    Abstract: A thermal transfer material is described herein that includes: a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material, and at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component. Methods of forming layered thermal interface materials and thermal transfer materials include: a) providing a heat spreader component, wherein the heat spreader component comprises a top surface, a bottom surface and at least one heat spreader material; b) providing at least one solder material, wherein the solder material is directly deposited onto the bottom surface of the heat spreader component; and c) depositing the at least one solder material onto the bottom surface of the heat spreader component.
    Type: Application
    Filed: June 4, 2004
    Publication date: July 13, 2006
    Inventors: Mark Fery, Nancy Dean
  • Publication number: 20040154927
    Abstract: An improved plating system comprises a plurality of non-electrically conductive shields forming an elongated upper channel and an elongated lower channel, the upper and lower channels each having a width less than or equal to one inch; a plurality of part holding clamps electrically coupled to a power source and positioned within the upper channel or the lower channel; a plating solution sparger comprising a series of inlets oriented to direct any plating solution flowing through the inlets into the lower channel and towards the upper channel; and a plurality of anodes positioned outside and along the length of the upper and lower channels.
    Type: Application
    Filed: January 26, 2004
    Publication date: August 12, 2004
    Inventors: Paul Silinger, Mark Fery
  • Patent number: 5639014
    Abstract: A method of making an integral solder and plated cover for an electronic package is described which involves applying a corrosion resistant material onto a metal strip and a solderable material on the corrosion resistant material. A solder material is then roll clad over the solderable material after which it is stamped to covers which are then coated with gold.
    Type: Grant
    Filed: July 5, 1995
    Date of Patent: June 17, 1997
    Assignee: Johnson Matthey Electronics, Inc.
    Inventors: David M. Damiano, Mark Fery, Terry J. Oldham