Patents by Inventor Mark Feuer

Mark Feuer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240382216
    Abstract: Systems and methods for monitoring a surgical tool are provided. A surgical tool may be advanced and rotated and sensor data from a sensor may be received. The sensor data may have a first value that is converted to a second value. A notification may be generated when the second value meets or exceeds a predetermined threshold.
    Type: Application
    Filed: May 9, 2024
    Publication date: November 21, 2024
    Inventors: Richard Todd Hage, Mark Feuer
  • Patent number: 8611741
    Abstract: A method and memory medium in a wavelength division multiplexing (WDM) network that communicates multiplexed signals representing a plurality of communication channels to determine received signal quality are disclosed. Generally, the signals format the plurality of communication channels to impart a distinctive noise profile in time or frequency for each channel; and collectively process the channels at a digital signal processing device to measure the signal-to-noise ratio.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 17, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mark Feuer, Mikhail Brodsky
  • Publication number: 20110110657
    Abstract: A method and memory medium in a wavelength division multiplexing (WDM) network that communicates multiplexed signals representing a plurality of communication channels to determine received signal quality are disclosed. Generally, the signals format the plurality of communication channels to impart a distinctive noise profile in time or frequency for each channel; and collectively process the channels at a digital signal processing device to measure the signal-to-noise ratio.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Inventors: Mark Feuer, Mikhail Brodsky
  • Publication number: 20070212072
    Abstract: A method and system for upgrading service to an optical network terminal among a plurality of optical network terminals on a passive optical network. The upgrade enables bidirectional communications between a central office and the optical network terminal over dedicated downstream and upstream wavelength channels outside the downstream and upstream wavelength bands associated with the passive optical network. The optical network terminal to receive upgraded service is disconnected from a passive optical splitter at a remote node serving the optical network terminal, and optically coupled to a port of the multi-port arrayed waveguide grating at the remote node. Wavelength taps are provided at the central office and the remote node to facilitate multiplexing and demultiplexing the dedicated downstream and upstream channels with the downstream and upstream wavelength bands associated with the passive optical network.
    Type: Application
    Filed: February 1, 2007
    Publication date: September 13, 2007
    Inventors: Patrick Iannone, Mark Feuer, Kenneth Reichmann, Kent McCammon
  • Publication number: 20070147739
    Abstract: A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: February 16, 2007
    Publication date: June 28, 2007
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20070081767
    Abstract: A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: November 27, 2006
    Publication date: April 12, 2007
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20070077007
    Abstract: An optical device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Application
    Filed: November 22, 2006
    Publication date: April 5, 2007
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20070003283
    Abstract: A bidirectional optical communications system that is operable to dynamically allocate wavelengths for transmission in either direction in an optical fiber. The dynamic allocation is controlled by programmable optical devices. The programmable optical devices may be well known programmable devices such as wavelength selective switches and wavelength blockers or any other programmable optical device capable of dynamically allocating wavelengths between the two directions in the optical fiber. In addition, the programmable optical devices may be any combination of such wavelength selective switches, wavelength blockers or other programmable optical devices with other optical devices such as optical circulators, gain blocks, add/drop multiplexers, or fixed optical filters.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventors: Mark Feuer, Sheryl Woodward
  • Publication number: 20060153563
    Abstract: A method and a system in which selected wavelengths of a wavelength division multiplexed (WDM) signal are modulated with multicast data for multicasting data services on an optical network. The WDM signal is received from a hub node of the optical network, such as a unidirectional ring network or a bi-directional ring network. A four-port wavelength crossbar switch (4WCS) selectably switches selected wavelengths from the optical network to a modulator loop. The modulator loop includes a multicast modulator that modulates the selected plurality of wavelengths with the multicast data. Each modulated wavelength is then switched back to the optical network by the 4WCS switch, and sent to a plurality of subscriber nodes of the optical network. This architecture allows a facility provider to be physically separated from a content provider, and affords the flexibility of selectively delivering multicast content to individual subscribers.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 13, 2006
    Inventors: Mark Feuer, Nicholas Frigo, Cedric Lam
  • Publication number: 20060115216
    Abstract: A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate.
    Type: Application
    Filed: January 10, 2006
    Publication date: June 1, 2006
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20060018598
    Abstract: A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate.
    Type: Application
    Filed: August 31, 2005
    Publication date: January 26, 2006
    Inventors: Mark Feuer, Nicholas Frigo
  • Publication number: 20050226620
    Abstract: A four-port wavelength-selective crossbar switch generates an add/drop wavelength signal from a wave division multiplexed (WDM) signal using a plurality of double-sided reflectors that selectively reflects a selected wavelength channel signal of the WDM signal through optical circulators to provide low crosstalk between the dropped and added wavelength signals. The switch also reduces the number of WDM MUX-DEMUX required to one half that compared to a traditional approach. Furthermore, the switch can be designed to be wavelength cyclic with individual free spectral ranges that can be independently set to either through or add/drop states.
    Type: Application
    Filed: April 5, 2004
    Publication date: October 13, 2005
    Inventors: Mark Feuer, Nicholas Frigo, Cedric Lam
  • Publication number: 20050094942
    Abstract: A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate.
    Type: Application
    Filed: November 10, 2004
    Publication date: May 5, 2005
    Inventors: Mark Feuer, Nicholas Frigo