Patents by Inventor Mark Fillinger

Mark Fillinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11559417
    Abstract: A catheter assembly for delivery of an expandable implant having at least one branch portal, which utilizes a secondary sleeve for releasably constraining a middle portion of the expandable implant after releasing a primary constraining sleeve used for constraining the expandable implant toward a delivery configuration for endoluminal delivery; and methods of using the same.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: January 24, 2023
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Dustin C. Burkart, Mark Fillinger, Larry L. Gibbs, Brandon C. Hedberg, Jason D. Hemmer, Timothy E. Johnston, Levon M. Majure, Steven W. Nelson, Jonathan W. Thom, Daniel J. Westphal, William Wilkie
  • Patent number: 10524944
    Abstract: A catheter assembly for delivery of an expandable implant having at least one branch portal, which utilizes a secondary sleeve for releasably constraining a middle portion of the expandable implant after releasing a primary constraining sleeve used for constraining the expandable implant toward a delivery configuration for endoluminal delivery; and methods of using the same.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: January 7, 2020
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Dustin C. Burkart, Mark Fillinger, Larry L. Gibbs, Brandon C. Hedberg, Jason D. Hemmer, Timothy E. Johnston, Levon M. Majure, Steven W. Nelson, Jonathan W. Thom, Daniel J. Westphal, William Wilkie
  • Publication number: 20060100502
    Abstract: In another preferred form of the present invention, there is provided a method for determining the risk of rupture of a blood vessel using an appropriate set of 2-D slice images obtained by scanning the blood vessel, the method comprising: generating a mesh model of the blood vessel using the set of 2-D slice images; conducting finite element stress analysis on the mesh model to calculate the level of stress on different locations on the mesh model; and determining the risk of rupture of the blood vessel based on the calculated levels of stress on different locations on the mesh model.
    Type: Application
    Filed: June 23, 2005
    Publication date: May 11, 2006
    Inventors: David Chen, Jeff Dwyer, Mark Fillinger, Steven Marra, M. Chapman