Patents by Inventor Mark Fodor

Mark Fodor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11136665
    Abstract: Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: October 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Dale Du Bois, Mohamad A. Ayoub, Robert Kim, Amit Kumar Bansal, Mark Fodor, Binh Nguyen, Siu F. Cheng, Hang Yu, Chiu Chan, Ganesh Balasubramanian, Deenesh Padhi, Juan Carlos Rocha
  • Publication number: 20190153592
    Abstract: Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Dale Du BOIS, Mohamad A. AYOUB, Robert KIM, Amit Kumar BANSAL, Mark FODOR, Binh NGUYEN, Siu F. CHENG, Hang YU, Chiu CHAN, Ganesh BALASUBRAMANIAN, Deenesh PADHI, Juan Carlos ROCHA
  • Patent number: 10227695
    Abstract: Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 12, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dale R. Du Bois, Mohamad A. Ayoub, Robert Kim, Amit Bansal, Mark Fodor, Binh Nguyen, Siu F. Cheng, Hang Yu, Chiu Chan, Ganesh Balasubramanian, Deenesh Padhi, Juan Carlos Rocha
  • Publication number: 20160145742
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 26, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Karthik Janakiraman, Thomas NOWAK, Juan Carlos ROCHA-ALVAREZ, Mark FODOR, Dale R. DU BOIS, Amit Kumar BANSAL, Mohamad A. AYOUB, Eller Y. JUCO, Visweswaren SIVARAMAKRISHNAN, Hichem M'SAAD
  • Patent number: 8778813
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: July 15, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Mark Fodor, Jianhua Zhou, Amit Bansal, Mohamad A. Ayoub, Shahid Shaikh, Patrick Reilly, Deenesh Padhi, Thomas Nowak
  • Publication number: 20110294303
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
    Type: Application
    Filed: May 6, 2011
    Publication date: December 1, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Mark Fodor, Jianhua Zhou, Amit Bansal, Mohamad A. Ayoub, Shahid Shaikh, Patrick Reilly, Deenesh Padhi, Thomas Nowak
  • Publication number: 20110159211
    Abstract: Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dale R. Du Bois, Mohamad A. Ayoub, Robert Kim, Amit Bansal, Mark Fodor, Binh Nguyen, Siu F. Cheng, Hang Yu, Chiu Chan, Ganesh Balasubramanian, Deenesh Padhi, Juan Carlos Rocha
  • Publication number: 20060272774
    Abstract: A substrate support comprises a ceramic disc with an electrode that is chargeable through an electrode terminal. An electrical connector connects an external power source to the electrode terminal. The electrical connector has a pair of opposing pincer arms, a groove sized to fit around the electrode terminal, and a pair of through holes to receive a tightening assembly capable of tightening the opposing pincer arms about the electrode terminal.
    Type: Application
    Filed: June 3, 2005
    Publication date: December 7, 2006
    Inventors: Kazutoshi Maehara, Visweswaren Sivaramakrishnan, Kentaro Wada, Mark Fodor, Andrzei Kaszuba
  • Publication number: 20050196971
    Abstract: Embodiments in accordance with the present invention relate to various techniques which may be employed alone or in combination, to reduce or eliminate the deposition of material on the bevel of a semiconductor workpiece. In one approach, a shadow ring overlies the edge of the substrate to impede the flow of gases to bevel regions. The geometric feature at the edge of the shadow ring directs the flow of gases toward the wafer in order to maintain thickness uniformity across the wafer while shadowing the edge. In another approach, a substrate heater/support is configured to flow purge gases to the edge of a substrate being supported. These purge gases prevent process gases from reaching the substrate edge and depositing material on bevel regions.
    Type: Application
    Filed: January 26, 2005
    Publication date: September 8, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Soovo Sen, Mark Fodor, Visweswaren Sivaramakrishnan, Junting Liu
  • Publication number: 20050150452
    Abstract: The present invention provides a process kit for a semiconductor processing chamber. The processing chamber is a vacuum processing chamber that includes a chamber body defining an interior processing region. The processing region receives a substrate for processing, and also supports equipment pieces of the process kit. The process kit includes a pumping liner configured to be placed within the processing region of the processing chamber, and a C-channel liner configured to be placed along an outer diameter of the pumping liner. The pumping liner and the C-channel liner have novel interlocking features designed to inhibit parasitic pumping of processing or cleaning gases from the processing region. The invention further provides a semiconductor processing chamber having an improved process kit, such as the kit described. In one arrangement, the chamber is a tandem processing chamber.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 14, 2005
    Inventors: Soovo Sen, Mark Fodor, Martin Seamons, Priya Kulkarni, Visweswaren Sivaramakrishnan, Sudha Rathi, Tsutomu Shimayama, Thomas Nowak, Wendy Yeh
  • Publication number: 20050078953
    Abstract: A substrate heater assembly for supporting a substrate of a predetermined standardized diameter during processing is provided. In one embodiment, the substrate heater assembly includes a body having an upper surface, a lower surface and an embedded heating element. A substrate support surface is formed in the upper surface of the body and defines a portion of a substrate receiving pocket. An annular wall is oriented perpendicular to the upper surface and has a length of at least one half a thickness of the substrate. The wall bounds an outer perimeter of the substrate receiving pocket and has a diameter less than about 0.5 mm greater than the predetermined substrate diameter.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 14, 2005
    Inventors: Mark Fodor, Sophia Velastegui, Soovo Sen, Visweswaren Sivaramakrishnan, Peter Lee, Mario Silvetti
  • Patent number: 6689930
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to form excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: February 10, 2004
    Assignee: Applied Materials Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Jr., Sebastion Raoux, Mark Fodor
  • Patent number: 6680420
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: January 20, 2004
    Assignee: Applied Materials Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Jr., Sebastien Raoux, Mark Fodor
  • Patent number: 6517913
    Abstract: An apparatus for converting PFC gases exhausted from semiconductor processing equipment to less harmful, non-PFC gases. One embodiment of the apparatus includes a silicon filter and a plasma generation system. The plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with silicon and/or oxygen in the filter and convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts. Another embodiment includes a plasma generation system and a particle trapping and collection system. The particle trapping and collection system traps silicon containing residue from deposition processes that produces such residue, and the plasma generation system forms a plasma from the effluent PFC gases. Constituents from the plasma react with the collected residue to convert the effluent PFC gases to less harmful, non-PFC gaseous products and byproducts.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: February 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Sebastien Raoux, Judy H. Huang, William N. Taylor, Jr., Mark Fodor, Kevin Fairbairn
  • Patent number: 6506994
    Abstract: A heating chamber assembly for heating or maintaining the temperature of at least one wafer, employs thick film heater plates stacked at an appropriate distance to form a slot between each pair of adjacent heater plate surfaces. The heating chamber assembly may be employed adjacent one or more processing chambers to form a preheat station separate from the processing chambers, or may be incorporated in the load lock of one or more such processing chambers. The thick film heater plates are more efficient and have a better response time than conventional heat plates. A chamber surrounding the stack of heater plates is pressure sealable and nay include a purge gas inlet for supply purge gas thereto under pressure. A door to the chamber opens to allow wafers to be inserted or removed and forms a pressure seal upon closing. The slots in the stack are alignable with the door for loading and unloading of wafers.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: January 14, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Yen-Kun Victor Wang, Mark Fodor, Chen-An Chen, Himanshu Pokharna, Son T. Nguyen, Kelly Fong, Inna Shmurun
  • Publication number: 20020190051
    Abstract: A heating chamber assembly for heating or maintaining the temperature of at least one wafer, employs thick film heater plates stacked at an appropriate distance to form a slot between each pair of adjacent heater plate surfaces. The heating chamber assembly may be employed adjacent one or more processing chambers to form a preheat station separate from the processing chambers, or may be incorporated in the load lock of one or more such processing chambers. The thick film heater plates are more efficient and have a better response time than conventional heat plates. A chamber surrounding the stack of heater plates is pressure sealable and may include a purge gas inlet for supply purge gas thereto under pressure. A door to the chamber opens to allow wafers to be inserted or removed and forms a pressure seal upon closing. The slots in the stack are alignable with the door for loading and unloading of wafers.
    Type: Application
    Filed: June 15, 2001
    Publication date: December 19, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Yen-Kun Victor Wang, Mark Fodor, Chen-An Chen, Himanshu Pokharna, Son T. Nguyen, Kelly Fong, Inna Shmurun
  • Patent number: 6358573
    Abstract: A substrate processing system that includes a ceramic substrate holder having an RF electrode embedded within the substrate holder and a gas inlet manifold spaced apart from the substrate holder. The gas inlet manifold supplies one or more process gases through multiple conical holes to a reaction zone of a substrate processing chamber within the processing system and also acts as a second RF electrode. Each conical hole has an outlet that opens into the reaction zone and an inlet spaced apart from the outlet that is smaller in diameter than said outlet. A mixed frequency RF power supply is connected to the substrate processing system with a high frequency RF power source connected to the gas inlet manifold electrode and a low frequency RF power source connected to the substrate holder electrode. An RF filter and matching network decouples the high frequency waveform from the low frequency waveform.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: March 19, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Sébastien Raoux, Mandar Mudholkar, William N. Taylor, Mark Fodor, Judy Huang, David Silvetti, David Cheung, Kevin Fairbairn
  • Patent number: 6354241
    Abstract: An apparatus and method for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor-processing device. The apparatus includes a vessel chamber having an inlet, an outlet and a fluid conduit between the two that fluidly couples the outlet with the inlet. The fluid conduit includes first and second collection sections. The first collection section includes a first plurality of electrodes aligned parallel to a first plane and the second collection section includes a second plurality of electrodes aligned parallel to a second plane that is substantially perpendicular to the first plane. The electrodes are connected to a voltage differential to form an electrostatic particle collector that traps electrically charged particles and particulate matter flowing through the fluid conduit. Particles are collected on the electrodes within the fluid conduit during substrate processing operations such as CVD deposition steps.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: March 12, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tsutomu Tanaka, Chau Nguyen, Hari Ponnekanti, Kevin Fairbairn, Sébastien Raoux, Mark Fodor
  • Publication number: 20010016674
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to form excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Application
    Filed: December 4, 2000
    Publication date: August 23, 2001
    Applicant: Applied Materials , Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Sebastien Raoux, Mark Fodor
  • Patent number: 6194628
    Abstract: An apparatus for preventing particulate matter and residue build-up within a vacuum exhaust line of a semiconductor processing device. The apparatus uses RF energy to form excite the constituents of particulate matter exhausted from a semiconductor processing chamber into a plasma state such that the constituents react to form gaseous products that may be pumped through the vacuum line. The apparatus may include a collection chamber structured and arranged to collect particulate matter flowing through the apparatus and inhibiting egress of the particulate matter from the apparatus. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: February 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ben Pang, David Cheung, William N. Taylor, Jr., Sebastien Raoux, Mark Fodor