Patents by Inventor Mark Fromhold

Mark Fromhold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180289495
    Abstract: Intervertebral spacer assemblies, systems, and methods thereof. A method of insertion include inserting an intervertebral spacer and plate together using an insertion tool and, upon removal of the insertion tool, the intervertebral spacer and plate are no longer considered connected/coupled and act as separate components.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventors: Jason Gray, Mark Fromhold, Brittany Hansen, Mark Miccio, Morgan Kunkle, Matthew Urban, Jason Zappacosta, Noah Hansell, Mark Adams
  • Patent number: 10085844
    Abstract: Embodiments of the present disclosure relate to devices and methods for treating one or more damaged, diseased, or traumatized portions of the spine, including intervertebral discs, to reduce or eliminate associated back pain. In one or more embodiments, the present disclosure relates to an expandable interbody spacer. The expandable interbody spacer may comprise a first jointed arm comprising a plurality of links pivotally coupled end to end. The expandable interbody spacer further may comprise a second jointed arm comprising a plurality of links pivotally coupled end to end. The first jointed arm and the second jointed arm may be interconnected at a proximal end of the expandable interbody spacer. The first jointed arm and the second jointed arm may be interconnected at a distal end of the expandable interbody spacer.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: October 2, 2018
    Assignee: Globus Medical, Inc.
    Inventors: Jonathan Perloff, Christopher Saville, Robert H. Wriggins, Jr., Jason Pastor, William Rhoda, Mark Fromhold
  • Patent number: 10080591
    Abstract: A resilient core is positioned between bony projections which are offset from a principal load bearing region of a spinal joint. Shaped projections extend from the core, and engage the bony projections by conforming to anatomical landmarks, and may be fastened to the bony projections. During flexion of the joint, the core absorbs some of the force of compression, and limits an extent to which the joint may compress. If the shaped projections are connected to the bony projections, extension of the joint is inhibited by the projections and the core, limiting the extent to which the joint may be distracted. In this manner, healing is fostered, and a weakened or damaged joint is protected from excessive movement.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: September 25, 2018
    Assignee: Globus Medical Inc
    Inventors: David C. Paul, Sean Suh, Jody L. Seifert, Mark Fromhold
  • Publication number: 20180250142
    Abstract: A method of implanting an intervertebral spacer may include positioning the intervertebral spacer within an intervertebral space defined by adjacent vertebral bodies. The intervertebral spacer may include a plurality of bores, and each of the plurality of bores may be configured to receive either a linear fastening element or a curvilinear fastening element. The method also may include selecting a first fastening element from a group including linear fastening elements and curvilinear fastening elements, and inserting the first fastening element into a first bore of the plurality of bores such that the first fastening element is inserted into one of the adjacent vertebral bodies to secure the intervertebral spacer within the intervertebral space.
    Type: Application
    Filed: April 25, 2018
    Publication date: September 6, 2018
    Inventors: Jason Zappacosta, Mark Fromhold, Jason Gray, Michael Hunt, Chris Saville, Robert Rhoads, Michael Evangelist, John Perkins, Nick Padovani
  • Publication number: 20180177606
    Abstract: Interbody fusion devices including deployable fixation members. The implant may include a spacer, optionally, an end member coupled to the spacer, and one or more fixation members configured to extend into adjacent vertebrae. The fixation members may include screws, nails, shims, tangs, spikes, staples, pins, blades, fins, or the like, and combinations thereof.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 28, 2018
    Inventors: Don Reed, Aditya lngalhalikar, Jeff Nichols, Brandon Preske, Mark Fromhold, Colm McLaughlin, Mark Adams, Brian Garvey
  • Patent number: 9980824
    Abstract: A method of implanting an intervertebral spacer may include positioning the intervertebral spacer within an intervertebral space defined by adjacent vertebral bodies. The intervertebral spacer may include a plurality of bores, and each of the plurality of bores may be configured to receive either a linear fastening element or a curvilinear fastening element. The method also may include selecting a first fastening element from a group including linear fastening elements and curvilinear fastening elements, and inserting the first fastening element into a first bore of the plurality of bores such that the first fastening element is inserted into one of the adjacent vertebral bodies to secure the intervertebral spacer within the intervertebral space.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: May 29, 2018
    Assignee: Globus Medical, Inc.
    Inventors: Jason Zappacosta, Mark Fromhold, Jason Gray, Michael Hunt, Chris Saville, Robert Rhoads, Michael Evangelist, John Perkins, Nick Padovani
  • Publication number: 20180140334
    Abstract: Provided are rod coupler devices, systems, kits and methods, which include at least one saddle having a concave configuration that either abuts a bone fastener and/or a locking cap and is shaped so as to contact the rod in two or more lines of contact, which reduces pressure on the rod, and therefore permits use of a rod having various materials, such as PEEK, without significant deformation of the rod. Also provided is the saddle itself and integrated locking caps that include a saddle, the locking cap and a set screw. Also provided are elongate rods having advantageous shapes, configurations, and/or compositions for rod coupler devices, systems and methods. Further provided are screw and cap devices and systems that themselves include a concave configuration so as to contact a rod in two or more lines of contact, which reduces pressure on the rod.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 24, 2018
    Inventors: Jeff Nichols, Fred Harderbrook, Aditya lngalhalikar, Mark Fromhold
  • Patent number: 9872780
    Abstract: Interbody fusion devices including deployable fixation members. The implant may include a spacer, optionally, an end member coupled to the spacer, and one or more fixation members configured to extend into adjacent vertebrae. The fixation members may include screws, nails, shims, tangs, spikes, staples, pins, blades, fins, or the like, and combinations thereof.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: January 23, 2018
    Assignee: Globus Medical, Inc.
    Inventors: Don Reed, Aditya Ingalhalikar, Jeff Nichols, Brandon Preske, Mark Fromhold, Colm McLaughlin, Mark Adams, Brian Garvey
  • Patent number: 9855076
    Abstract: Provided are rod coupler devices, systems, kits and methods, which include at least one saddle having a concave configuration that either abuts a bone fastener and/or a locking cap and is shaped so as to contact the rod in two or more lines of contact, which reduces pressure on the rod, and therefore permits use of a rod having various materials, such as PEEK, without significant deformation of the rod. Also provided is the saddle itself and integrated locking caps that include a saddle, the locking cap and a set screw. Also provided are elongate rods having advantageous shapes, configurations, and/or compositions for rod coupler devices, systems and methods. Further provided are screw and cap devices and systems that themselves include a concave configuration so as to contact a rod in two or more lines of contact, which reduces pressure on the rod.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: January 2, 2018
    Assignee: Globus Medical, Inc.
    Inventors: Jeff Nichols, Fred Harderbrook, Aditya Ingalhalikar, Mark Fromhold
  • Publication number: 20170224500
    Abstract: Embodiments of the present disclosure relate to devices and methods for treating one or more damaged, diseased, or traumatized portions of the spine, including intervertebral discs, to reduce or eliminate associated back pain. In one or more embodiments, the present disclosure relates to an expandable interbody spacer. The expandable interbody spacer may comprise a first jointed arm comprising a plurality of links pivotally coupled end to end. The expandable interbody spacer further may comprise a second jointed arm comprising a plurality of links pivotally coupled end to end. The first jointed arm and the second jointed arm may be interconnected at a proximal end of the expandable interbody spacer. The first jointed arm and the second jointed arm may be interconnected at a distal end of the expandable interbody spacer.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 10, 2017
    Inventors: Jonathan Perloff, Christopher Saville, Robert H. Wriggins, JR., Jason Pastor, William Rhoda, Mark Fromhold
  • Patent number: 9655737
    Abstract: Embodiments of the present disclosure relate to devices and methods for treating one or more damaged, diseased, or traumatized portions of the spine, including intervertebral discs, to reduce or eliminate associated back pain. In one or more embodiments, the present disclosure relates to an expandable interbody spacer. The expandable interbody spacer may comprise a first jointed arm comprising a plurality of links pivotally coupled end to end. The expandable interbody spacer further may comprise a second jointed arm comprising a plurality of links pivotally coupled end to end. The first jointed arm and the second jointed arm may be interconnected at a proximal end of the expandable interbody spacer. The first jointed arm and the second jointed arm may be interconnected at a distal end of the expandable interbody spacer.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: May 23, 2017
    Assignee: Globus Medical, Inc.
    Inventors: Jonathan Perloff, Christopher Saville, Robert H. Wriggins, Jr., Jason Pastor, William Rhoda, Mark Fromhold
  • Publication number: 20170071750
    Abstract: The present application generally relates to orthopedic systems, and in particular, to systems including independent plates and spacers. A plating system can include a spacer and a plate that is independent from the spacer. A number of locking mechanisms can be provided to secure the plate to the spacer. In some cases, the spacer includes a pair of notches that extend on an outer surface of the spacer. The plate can include a pair of lateral extensions that can engage the notches to secure the plate to the spacer. In other cases, the spacer includes an opening including a pair of inlets. The plate can include an enclosed posterior extension that can be received in the pair of inlets to secure the plate to the spacer.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 16, 2017
    Inventors: Matthew Urban, Samuel Petersheim, Mark Miccio, Mark Fromhold
  • Publication number: 20160317189
    Abstract: Provided are rod coupler devices, systems, kits and methods, which include at least one saddle having a concave configuration that either abuts a bone fastener and/or a locking cap and is shaped so as to contact the rod in two or more lines of contact, which reduces pressure on the rod, and therefore permits use of a rod having various materials, such as PEEK, without significant deformation of the rod. Also provided is the saddle itself and integrated locking caps that include a saddle, the locking cap and a set screw. Also provided are elongate rods having advantageous shapes, configurations, and/or compositions for rod coupler devices, systems and methods. Further provided are screw and cap devices and systems that themselves include a concave configuration so as to contact a rod in two or more lines of contact, which reduces pressure on the rod.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 3, 2016
    Inventors: Jeff Nichols, Fred Harderbrook, Aditya Ingalhalikar, Mark Fromhold
  • Publication number: 20160310295
    Abstract: Interbody fusion devices including deployable fixation members. The implant may include a spacer, optionally, an end member coupled to the spacer, and one or more fixation members configured to extend into adjacent vertebrae. The fixation members may include screws, nails, shims, tangs, spikes, staples, pins, blades, fins, or the like, and combinations thereof.
    Type: Application
    Filed: April 28, 2016
    Publication date: October 27, 2016
    Inventors: Don Reed, Aditya lngalhalikar, Jeff Nichols, Brandon Preske, Mark Fromhold, Colm McLaughlin, Mark Adams, Brian Garvey
  • Patent number: 9358046
    Abstract: Provided are rod coupler devices, systems, kits and methods, which include at least one saddle having a concave configuration that either abuts a bone fastener and/or a locking cap and is shaped so as to contact the rod in two or more lines of contact, which reduces pressure on the rod, and therefore permits use of a rod having various materials, such as PEEK, without significant deformation of the rod. Also provided is the saddle itself and integrated locking caps that include a saddle, the locking cap and a set screw. Also provided are elongate rods having advantageous shapes, configurations, and/or compositions for rod coupler devices, systems and methods. Further provided are screw and cap devices and systems that themselves include a concave configuration so as to contact a rod in two or more lines of contact, which reduces pressure on the rod.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: June 7, 2016
    Assignee: Globus Medical, Inc.
    Inventors: Jeff Nichols, Fred Harderbrook, Aditya Ingalhalikar, Mark Fromhold
  • Patent number: 9351847
    Abstract: Interbody fusion devices including deployable fixation members. The implant may include a spacer, optionally, an end member coupled to the spacer, and one or more fixation members configured to extend into adjacent vertebrae. The fixation members may include screws, nails, shims, tangs, spikes, staples, pins, blades, fins, or the like, and combinations thereof.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 31, 2016
    Assignee: Globus Medical, Inc.
    Inventors: Don Reed, Aditya Ingalhalikar, Jeff Nichols, Brandon Preske, Mark Fromhold, Colm McLaughlin, Mark Adams, Brian Garvey
  • Patent number: 9278008
    Abstract: Embodiments of the present disclosure relate to devices and methods for treating one or more damaged, diseased, or traumatized portions of the spine, including intervertebral discs, to reduce or eliminate associated back pain. In one or more embodiments, the present disclosure relates to an expandable interbody spacer. The expandable interbody spacer may comprise a first jointed arm comprising a plurality of links pivotally coupled end to end. The expandable interbody spacer further may comprise a second jointed arm comprising a plurality of links pivotally coupled end to end. The first jointed arm and the second jointed arm may be interconnected at a proximal end of the expandable interbody spacer. The first jointed arm and the second jointed arm may be interconnected at a distal end of the expandable interbody spacer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 8, 2016
    Assignee: GLOBUS MEDICAL, INC.
    Inventors: Jonathan Perloff, Christopher Saville, Robert H. Wriggins, Jr., Jason Pastor, William Rhoda, Mark Fromhold
  • Publication number: 20160058563
    Abstract: A method of implanting an intervertebral spacer may include positioning the intervertebral spacer within an intervertebral space defined by adjacent vertebral bodies. The intervertebral spacer may include a plurality of bores, and each of the plurality of bores may be configured to receive either a linear fastening element or a curvilinear fastening element. The method also may include selecting a first fastening element from a group including linear fastening elements and curvilinear fastening elements, and inserting the first fastening element into a first bore of the plurality of bores such that the first fastening element is inserted into one of the adjacent vertebral bodies to secure the intervertebral spacer within the intervertebral space.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Jason Zappacosta, Mark Fromhold, Jason Gray, Michael Hunt, Chris Saville, Robert Rhoads, Michael Evangelist, John Perkins, Nick Padovani
  • Publication number: 20160058564
    Abstract: A method of implanting an intervertebral spacer may include positioning the intervertebral spacer within an intervertebral space defined by adjacent vertebral bodies. The intervertebral spacer may include a plurality of bores, and each of the plurality of bores may be configured to receive either a linear fastening element or a curvilinear fastening element. The method also may include selecting a first fastening element from a group including linear fastening elements and curvilinear fastening elements, and inserting the first fastening element into a first bore of the plurality of bores such that the first fastening element is inserted into one of the adjacent vertebral bodies to secure the intervertebral spacer within the intervertebral space.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Jason Zappacosta, Mark Fromhold, Jason Gray, Michael Hunt, Chris Saville, Robert Rhoads, Michael Evangelist, John Perkins, Nick Padovani
  • Publication number: 20160058565
    Abstract: A method of implanting an intervertebral spacer may include positioning the intervertebral spacer within an intervertebral space defined by adjacent vertebral bodies. The intervertebral spacer may include a plurality of bores, and each of the plurality of bores may be configured to receive either a linear fastening element or a curvilinear fastening element. The method also may include selecting a first fastening element from a group including linear fastening elements and curvilinear fastening elements, and inserting the first fastening element into a first bore of the plurality of bores such that the first fastening element is inserted into one of the adjacent vertebral bodies to secure the intervertebral spacer within the intervertebral space.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Jason Zappacosta, Mark Fromhold, Jason Gray, Michael Hunt, Chris Saville, Robert Rhoads, Michael Evangelist, John Perkins, Nick Padovani