Patents by Inventor Mark G. Goode

Mark G. Goode has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9487601
    Abstract: Methods for making olefin polymerization catalysts and methods for making polymers using the catalysts are provided. The method for making the catalyst can include combining one or more supports with one or more magnesium-containing compounds under reaction conditions to form a first reacted product. One or more chlorinating compounds selected from the group consisting of aluminum alkyl chlorides and chloro substituted silanes can be combined with the first reacted product under reaction conditions to form a second reacted product. One or more titanium-containing compounds selected from the group consisting of titanium alkoxides and titanium halides can be combined with the second reacted product under reaction conditions to form a catalyst.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: November 8, 2016
    Assignee: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Publication number: 20160297907
    Abstract: Disclosed herein are methods of controlling polymer properties in polymerization processes that use a chromium-based catalyst. An embodiment discloses a method of producing a polyolefin comprising: contacting a reaction mixture and a reduced chromium oxide catalyst in a gas-phase reactor to produce the polyolefin, wherein the reaction mixture comprises a monomer and a co-monomer; and changing a reaction temperature in the gas-phase reactor by about 1° C. or more whereby a gas molar ratio of the co-monomer to the monomer is changed by about 2% or more and a co-monomer content of the polyolefin at substantially constant density is changed by about 2% or more. Additional methods and compositions are also provided.
    Type: Application
    Filed: September 25, 2014
    Publication date: October 13, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Mark G. Goode, Francois Alexandre, Kevin J. Cann, Barbara J. Kopp, William A. Matthews, John H. Moorehouse, Cliff R. Mure
  • Publication number: 20160194421
    Abstract: Methods for making olefin polymerization catalysts and methods for making polyethylene polymers using the catalysts are provided. The polyethylenes can have a molecular weight distribution (MWD) of about 4.5 to about 14, a slope of strain hardening greater than about 0.75, and a melt flow ratio (MFR) greater than or equal to 8.33+(4.17×MWD).
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Applicant: Univation Technologies, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Patent number: 9303103
    Abstract: Embodiments disclosed herein generally relate to olefin polymerization catalysts, and more specifically to chromium-based catalysts and methods of use of chromium-based catalysts for the production of polyolefins, and even more specifically to methods for controlling or tailoring the flow index response of chromium-based catalysts through the controlled addition of a reducing agent to the catalysts under controlled mixing conditions.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 5, 2016
    Assignee: Univation Technologies, LLC
    Inventors: John H. Moorhouse, Kevin J. Cann, Mark G. Goode, Ronald S. Eisinger
  • Publication number: 20150368377
    Abstract: Catalyst systems and methods for making and using the same are provided. The catalyst systems can include a plurality of silica particles and a metallocene catalyst and an activator supported on the plurality of silica particles. The polymerization catalysts have a particle size distribution in which about 10% of the particles have a size less than about 17 to about 23 micrometers, about 50% of the particles have a size less than about 40 to about 45 micrometers, and about 90% of the particles have a size less than about 72 to about 77 micrometers.
    Type: Application
    Filed: November 20, 2013
    Publication date: December 24, 2015
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Dale C. Lester, Kevin J. Cann, Phuong A. Cao, Mark G. Goode, Abarajith S. Hari, David F. Hussein, Wesley R. Mariott, John H. Moorhouse, Richard B. Pannell, Bruce J. Savatsky, Daniel P. Zilker, JR.
  • Publication number: 20150274859
    Abstract: A catalyst system for polymerizing olefin-based polymers and interpolymers is disclosed. The catalyst system may include a supported chromium catalyst and a Ziegler-Natta catalyst comprising a bulking agent, Mg, and Ti. The Ziegler-Natta catalysts in catalyst systems disclosed herein run exceptionally well without addition of excessive amounts of co-catalyst, thus allowing for use of chromium based supported catalysts that would otherwise be overwhelmed by aluminum alkyl. Further, embodiments disclosed herein may be run without an internal electron donor, and the lack of an internal electron donor in the system also prevents poisoning of the chromium catalysts by the internal electron donor. By including or co-feeding a chromium based catalyst with these Ziegler-Natta catalysts, it has been found that the molecular architecture of the resulting polyolefins, such as polyethylenes, may provide for resins with excellent processing properties.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 1, 2015
    Applicant: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Robert J. Jorgensen, Wesley R. Mariott, Mark G. Goode, John H. Moorhouse
  • Patent number: 9023958
    Abstract: A method for the delivery of a catalyst to a polymerization reactor is disclosed, comprising: contacting a catalyst with a carrier fluid comprising an inert hydrocarbon in gaseous form, the inert hydrocarbon having a normal boiling point of about ?1° C. to about 81° C.; and flowing the carrier fluid to the polymerization reactor such that the carrier fluid transports the catalyst to the polymerization reactor. A catalyst delivery system is disclosed, comprising: a catalyst vessel for containing a catalyst; a catalyst injection line for delivering the catalyst to a polymerization reactor, the catalyst injection line being in fluid communication with the catalyst vessel and the polymerization reactor; and a carrier fluid line in fluid communication with the catalyst injection line for delivering a carrier fluid comprising an inert hydrocarbon to the catalyst injection line, the inert hydrocarbon having a normal boiling point of about ?1° C. to about 81° C.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: May 5, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Dale A. Wright, John R. Parrish, James L. Swecker, II, Mark G. Goode
  • Patent number: 8981021
    Abstract: Various methods and systems for using oxygen in a polyolefin polymerization reactor system are provided. In certain embodiments, the methods are performed in conjunction with a polymerization reactor system such as a gas-phase reactor system.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: March 17, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Ronald S. Eisinger, Mark G. Goode
  • Publication number: 20150011719
    Abstract: Methods for making olefin polymerization catalysts and methods for making polymers using the catalysts are provided. The method for making the catalyst can include combining one or more supports with one or more magnesium-containing compounds under reaction conditions to form a first reacted product. One or more chlorinating compounds selected from the group consisting of aluminum alkyl chlorides and chloro substituted silanes can be combined with the first reacted product under reaction conditions to form a second reacted product. One or more titanium-containing compounds selected from the group consisting of titanium alkoxides and titanium halides can be combined with the second reacted product under reaction conditions to form a catalyst.
    Type: Application
    Filed: February 18, 2013
    Publication date: January 8, 2015
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Wesley R. Mariott, Kevin J. Cann, John H. Moorhouse, Mark G. Goode, Thomas Oswald
  • Publication number: 20140378640
    Abstract: A method for the delivery of a catalyst to a polymerization reactor is disclosed, comprising: contacting a catalyst with a carrier fluid comprising an inert hydrocarbon in gaseous form, the inert hydrocarbon having a normal boiling point of about ?1° C. to about 81° C.; and flowing the carrier fluid to the polymerization reactor such that the carrier fluid transports the catalyst to the polymerization reactor. A catalyst delivery system is disclosed, comprising: a catalyst vessel for containing a catalyst; a catalyst injection line for delivering the catalyst to a polymerization reactor, the catalyst injection line being in fluid communication with the catalyst vessel and the polymerization reactor; and a carrier fluid line in fluid communication with the catalyst injection line for delivering a carrier fluid comprising an inert hydrocarbon to the catalyst injection line, the inert hydrocarbon having a normal boiling point of about ?1° C. to about 81° C.
    Type: Application
    Filed: October 25, 2012
    Publication date: December 25, 2014
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Dale A. Wright, John R. Parrish, James L. Swecker, II, Mark G. Goode
  • Patent number: 8835582
    Abstract: Catalyst systems and methods for making and using the same. The catalyst system can include a single site catalyst compound, a support comprising fluorinated alumina, and an aluminoxane. The aluminoxane can be present in an amount of about 10 mmol or less per gram of the support.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: September 16, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, C. Jeff Harlan, Wesley R. Mariott, Lixin Sun, Daniel P. Zilker, Jr., F. David Hussein, Phuong A. Cao, John H. Moorhouse, Mark G. Goode
  • Publication number: 20140179882
    Abstract: The present invention is broadly directed to various methods and systems for gas and liquid phase polymer production. In certain embodiments, the methods are performed in conjunction with a polymerization reactor system such as gas phase reactor system or liquid phase reactor system. The invention is also broadly directed to various systems in which polymer properties are manipulated by addition of DEALE directly to a polymerization reactor system.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 26, 2014
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Mark G. Goode, Kevin J. Cann, Ronald S. Eisinger, Barbara J. Kopp, John H. Moorhouse
  • Patent number: 8637615
    Abstract: Provided is a method for making a polyolefin comprising contacting one or more olefins in a reactor containing a catalyst; polymerizing the one or more olefins to produce an olefin polymer characterized by a first melt flow ratio (MFR) and a first haze; and altering the reaction temperature in the reactor to shift the first MFR to a MFR that is different than the first MFR and to shift the first haze to a haze that is different than the first haze.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: January 28, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Dongming Li, Ching-Tai Lue, Chi-I Kuo, Mark G. Goode, Stefan B. Ohlsson
  • Patent number: 8598287
    Abstract: A process for polymerizing olefin(s) utilizing a cyclic bridged metallocene catalyst system to produce polymers with improved properties is provided. The catalyst system may include a cyclic bridged metallocene, LA(R?SiR?)LBZrQ2, activated by an activator, the activator comprising aluminoxane, a modified aluminoxane, or a mixture thereof, and supported by a support, where: LA and LB are independently an unsubstituted or a substituted cyclopentadienyl ligand bonded to Zr and defined by the formula (C5H4-dRd), where R is hydrogen, a hydrocarbyl substituent, a substituted hydrocarbyl substituent, or a heteroatom substituent, and where d is 0, 1, 2, 3 or 4; LA and LB are connected to one another with a cyclic silicon bridge, R?SiR?, where R? are independently hydrocarbyl or substituted hydrocarbyl substituents that are connected with each other to form a silacycle ring; and each Q is a labile hydrocarbyl or a substituted hydrocarbyl ligand.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: December 3, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Dongming Li, Ching-Tai Lue, Francis C. Rix, Mark G Goode, Daniel P. Zilker, Jr., Tae Hoon Kwalk
  • Publication number: 20130035463
    Abstract: Catalyst systems and methods for making and using the same. The catalyst system can include a single site catalyst compound, a support comprising fluorinated alumina, and an aluminoxane. The aluminoxane can be present in an amount of about 10 mmol or less per gram of the support.
    Type: Application
    Filed: February 18, 2011
    Publication date: February 7, 2013
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Kevin J. Cann, C. Jeff Harlan, Wesley R. Mariott, Lixin Sun, Daniel P. Zilker, JR., F. David Hussein, Phuong A. Cao, John H. Moorhouse, Mark G. Goode
  • Patent number: 8329835
    Abstract: Polyethylene compositions having improved properties are provided. In one aspect, a polyethylene composition having a long chain branching index (g?avg) of 0.5 to 0.9; a Melt Flow Rate (MFR) of greater than (49.011×MI(?0.4304)), where MI is Melt Index; and a weight average molecular weight to number average molecular weight (Mw/Mn) of less than or equal to 4.6 is provided.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: December 11, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Mark G. Goode, Rainer Kolb, Chi-I Kuo, Tae Hoon Kwalk, Dongming Li, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr.
  • Publication number: 20120252994
    Abstract: Provided is a method for making a polyolefin comprising contacting one or more olefins in a reactor containing a catalyst; polymerizing the one or more olefins to produce an olefin polymer characterized by a first melt flow ratio (MFR) and a first haze; and altering the reaction temperature in the reactor to shift the first MFR to a MFR that is different than the first MFR and to shift the first haze to a haze that is different than the first haze.
    Type: Application
    Filed: November 16, 2010
    Publication date: October 4, 2012
    Applicant: Univation Technologies, LLC
    Inventors: Dongming Li, Ching-Tai Lue, Chi-I Kuo, Mark G. Goode, Stefan B. Ohlsson
  • Patent number: 8148481
    Abstract: A method for preparing a reactor for performance of a polymerization reaction, the method including providing at least one seed bed into the reactor; wherein the at least one seed bed includes at least one organometallic compound and polymer particles.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 3, 2012
    Assignee: Univation Technologies, LLC
    Inventors: F. David Hussein, Mark G. Goode, Michael E Muhle, David A. Yahn, Robert O. Hagerty
  • Patent number: 8129484
    Abstract: Disclosed herein are various processes, including continuous fluidized-bed gas-phase polymerization processes for making a high strength, high density polyethylene copolymer, comprising (including): contacting monomers that include ethylene and optionally at least one non-ethylene monomer with fluidized catalyst particles in a gas phase in the presence of hydrogen gas at an ethylene partial pressure of 100 psi or more and a polymerization temperature of 120° C. or less to produce a polyethylene copolymer having a density of 0.945 g/cc or more and an ESCR Index of 1.0 or more wherein the catalyst particles are prepared at an activation temperature of 700° C. or less, and include silica, chromium, and titanium.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 6, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Ronald S. Eisinger, Mark G. Goode, John H. Moorhouse, Cliff R. Mure, Stephen P. Jaker, Maria A. Apecetche
  • Patent number: 8101691
    Abstract: Disclosed herein are various methods and systems for gas and liquid phase polymer production. In certain embodiments, the methods comprise manipulating properties of polymers produced by adjusting the hydrogen feed rate.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 24, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Mark G. Goode, Maria Pollard, Kevin J. Cann, Ronald S. Eisinger, Barbara J. Kopp, John H. Moorhouse