Patents by Inventor Mark Gehrke

Mark Gehrke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9802539
    Abstract: A method and system for determining a distance and direction between a video camera secured on a vehicle and a target point relies on an electronic control unit. The system maps and stores grid points representing a world coordinate grid onto a screen coordinate grid and displays the video image on a display using the screen coordinate grid. The system obtains a target point of an object in the video image and determines a locus of four closest grid points of the screen coordinate grid that encircle the target point. The system determines screen distances from the target point to each of the four grid points and maps the four grid points onto the world coordinate grid. The electronic control unit interpolates the location of the target point in the world coordinate grid as weighted by the screen distances. Using the video camera location in world coordinates and the target point location in world coordinates, the system determines a distance between the video camera and the target point.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: October 31, 2017
    Assignee: Robert Bosch GmbH
    Inventor: Mark Gehrke
  • Publication number: 20170136948
    Abstract: Systems and methods are described for creating a unified output image based on image data from multiple cameras with overlapping fields of view by converting a raw image from each camera into a rectified output image using a look-up table. Camera misalignments are mitigated by generating an updated look-up table based on feature point detection and matching in the overlapping fields of view.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 18, 2017
    Inventors: Greg Sypitkowski, Michael Huebner, Mark Gehrke
  • Publication number: 20170109590
    Abstract: Systems and methods are presented for operating a vehicle camera system to detect, identify, and mitigate camera lens contamination. An image is received from a camera mounted on the vehicle and one or more metrics is calculated based on the received image. The system determines whether a lens of the camera is contaminated based on the one or more calculated metrics and, if so, determines a type of contamination. A specific mitigation routine is selected form a plurality of mitigation routines based on the determined type of contamination and is applied to the received image to create an enhanced image. The enhanced image is analyzed to determine whether the contamination is acceptably mitigated after application of the selected mitigation routine and a fault condition signal is output when the contamination is not acceptably mitigated.
    Type: Application
    Filed: May 27, 2015
    Publication date: April 20, 2017
    Inventor: Mark GEHRKE
  • Patent number: 9499018
    Abstract: A method and system for guiding a vehicle having a hitch connector to a trailer operates with a monocular vehicle video camera secured to a rear of the vehicle. In operation, the vehicle video camera generates video images from a rearward direction of the vehicle that are displayed. An electronic control unit including a processor is configured to: receive and display the video images, analyze the video images to confirm the location of a trailer coupler, analyze the video images to determine distance from a hitch connector of the vehicle to the trailer coupler, analyze the video images to determine height of the hitch connector of the vehicle, height of the trailer coupler of the trailer, and the relative height difference between the hitch connector of the vehicle and the trailer coupler of the trailer, and assist in guiding the vehicle to a trailer coupling position.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: November 22, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Mark Gehrke, James Stephen Miller
  • Publication number: 20160288711
    Abstract: A method and system for determining a distance and direction between a video camera secured on a vehicle and a target point relies on an electronic control unit. The system maps and stores grid points representing a world coordinate grid onto a screen coordinate grid and displays the video image on a display using the screen coordinate grid. The system obtains a target point of an object in the video image and determines a locus of four closest grid points of the screen coordinate grid that encircle the target point. The system determines screen distances from the target point to each of the four grid points and maps the four grid points onto the world coordinate grid. The electronic control unit interpolates the location of the target point in the world coordinate grid as weighted by the screen distances. Using the video camera location in world coordinates and the target point location in world coordinates, the system determines a distance between the video camera and the target point.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 6, 2016
    Inventor: Mark Gehrke
  • Publication number: 20160288601
    Abstract: A method and system for guiding a vehicle having a hitch connector to a trailer operates with a monocular vehicle video camera secured to a rear of the vehicle. In operation, the vehicle video camera generates video images from a rearward direction of the vehicle that are displayed. An electronic control unit including a processor is configured to: receive and display the video images, analyze the video images to confirm the location of a trailer coupler, analyze the video images to determine distance from a hitch connector of the vehicle to the trailer coupler, analyze the video images to determine height of the hitch connector of the vehicle, height of the trailer coupler of the trailer, and the relative height difference between the hitch connector of the vehicle and the trailer coupler of the trailer, and assist in guiding the vehicle to a trailer coupling position.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 6, 2016
    Inventors: Mark Gehrke, James Stephen Miller
  • Publication number: 20160272024
    Abstract: Systems and methods for using a hitch connection system to attach a vehicle to a trailer. The hitch connection system includes at feast one camera and a controller. The camera is configured to collect snags data of a vehicle hitch and a trailer coupler. The controller is configured to generate an overhead view image based on the image data. The controller is farther configured to calculate a relative height between the vehicle hitch and the trailer coupler based on the image data and generate an alert when the relative height is less ton a predetermined threshold.
    Type: Application
    Filed: November 18, 2014
    Publication date: September 22, 2016
    Inventors: Jeffrey Allen Bochenek, Jonathan Charles Diedrich, Mark Gehrke, Gunter Rottner
  • Publication number: 20160264046
    Abstract: Systems and methods are described for monitoring movement of a trailer relative to the towing vehicle and providing driver-assistance information to the driver of the towing vehicle. The system determines a velocity vector for the host vehicle at a location near a rear of the host vehicle at a defined lateral distance from a trailer hitch installed on the host vehicle. The system also determines a velocity vector for the trailer at a corresponding location on the trailer—that is a location on the front of the trailer at approximately the same defined lateral distance from the trailer hitch. The system compares the velocity vector for the host vehicle to the velocity vector for the trailer and determines, based on the comparison, whether a jack-knife condition is likely to occur. If a jack-knife condition is likely to occur, the system generates a warning signal.
    Type: Application
    Filed: November 18, 2014
    Publication date: September 15, 2016
    Inventors: Jeffrey Allen Bochenek, Jonathan Charles Diedrich, Mark Gehrke