Patents by Inventor Mark Gelfand

Mark Gelfand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190374575
    Abstract: This disclosure is directed to methods of preparing dendritic cells or other CD40 bearing antigen-presenting cells and methods of treating cancer by using the dendritic cells or other antigen-presenting cells in combination with anti-chemorepellant agents. This disclosure is further directed to methods of preparing T cells and methods of treating cancer, by activated T cells optionally in combination with anti-chemorepellant agents. The antigen presenting cells of the disclosure are activated by incubation with cancer cells and fusion proteins. The T cells of the disclosures are activated by incubation with activated antigen-presenting cells that were activated by incubation with cancer cells and a fusion protein. In particular, the fusion protein comprises an antigen-binding domain, e.g., an antibody or antibody fragment, and a stress protein domain.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 12, 2019
    Inventors: Mark C. Poznansky, Jeffrey A. Gelfand
  • Publication number: 20190375801
    Abstract: This disclosure is directed to immune treatment of a disease (e.g., an infectious disease) using a fusion protein in combination with an anti-chemorepellant agent. In particular, the fusion protein comprises an antigen-binding domain (e.g., an antibody or antibody fragment) and a stress protein domain.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 12, 2019
    Inventors: Mark C. Poznansky, Jeffrey A. Gelfand
  • Publication number: 20190375800
    Abstract: This disclosure is directed to immune treatment of a disease (e.g., cancer) using a fusion protein in combination with an anti-chemorepellant agent. In particular, the fusion protein comprises an antigen-binding domain (e.g.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 12, 2019
    Inventors: Mark C. Poznansky, Jeffrey A. Gelfand
  • Publication number: 20190351229
    Abstract: A lead system and method of use for treating breathing disorders by the transvenous stimulation of the phrenic nerve.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Randy W. Westlund, Mark Gelfand
  • Publication number: 20190350650
    Abstract: A method for treating a heart failure patient by ablating a nerve of the splanchnic sympathetic nervous system to increase venous capacitance and reduce pulmonary blood pressure. A method including: inserting a catheter into a vein adjacent the nerve, applying stimulation energy and observing hemodynamic effects, applying ablation energy and observing hemodynamic effects, applying simulation energy after the ablation and observing hemodynamic effects.
    Type: Application
    Filed: July 12, 2019
    Publication date: November 21, 2019
    Applicant: Axon Therapies, Inc.
    Inventors: Howard LEVIN, Mark GELFAND
  • Publication number: 20190343579
    Abstract: A treatment apparatus including: a bronchoscope including a flexible shaft having working channel; a transbronchial ablation probe configured to extend from a distal end of the working channel and extend thru a wall of a trachea and into tissue outside of the trachea; and a stabilization element mounted to a distal portion of the flexible shaft, wherein the stabilization element is configured to brace the distal portion against the wall of the trachea while the transbronchial ablation probe is extended through the wall of the trachea.
    Type: Application
    Filed: December 22, 2017
    Publication date: November 14, 2019
    Inventors: Harikrishna Tandri, Mark Gelfand, Tamara Baynham, Zoar Engelman
  • Publication number: 20190343581
    Abstract: An ablation catheter configured to ablate tissue in a lung of a patient including: a flexible shaft that advances endobronchially into an airway of the lung and has an outer diameter of 2.0 mm or less; an ablation electrode attached to a distal portion of the flexible shaft and to deliver radiofrequency (RF) electrical current to the tissue and conductively connectable to an RF electrical energy source external to the patient; wherein an outer diameter of an assembly of the flexible shaft and the ablation electrode is no greater than 2.0 mm; a liquid outlet on the distal portion and configured to be in fluid communication with a source of hypertonic saline solution; and a first occluder attached to the flexible shaft proximal to the ablation electrode and proximal to the liquid outlet, wherein the first occluder is configured to expand to occlude the airway.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Dorin PANESCU, Shashank RAINA, Mark Gelfand, Mark LEUNG, Simplicio VELILLA
  • Publication number: 20190321050
    Abstract: A medical device assembly including: an lung reduction device including a vertex, a first arm having an end connected to the vertex, and a second arm having an end connected to vertex, wherein the first and second arms extend into a respective one of airway branches in the lung and the vertex seats upstream of a bifurcation of the airway branches, wherein the first and second arms apply a bias force to the airway branches and thereby reduce a section of the lung near the airway branches; a bronchoscope including a channel housing the lung reduction device and having an opening to the channel through which the lung reduction device is deployed, and a pusher device associated with the bronchoscope and adapted to push the lung reduction device from the working channel to advance the first and second arms into the airway branches.
    Type: Application
    Filed: July 14, 2017
    Publication date: October 24, 2019
    Applicant: Eolo Medical Inc.
    Inventors: Mark GELFAND, Anthony WONG, Robert F. RIOUX, Zoar ENGELMAN
  • Patent number: 10441356
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 15, 2019
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Denise Zarins, Andrew Wu, Hanson Gifford, III, Mark Deem, Mark Gelfand, Howard R. Levin
  • Publication number: 20190282816
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Application
    Filed: March 28, 2019
    Publication date: September 19, 2019
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Patent number: 10414553
    Abstract: A package for preserving freshness and storing elongated items. The package is preferably biodegradable, substantially airtight, child resistant and reusable. Various seal constructions are described for sealing a case body portion against a case lid portion. The respective sealing surfaces of the case lid portion and case body portion are complementary, but spaced. A continuous elastomeric seal is provided in the seal space between the complementary sealing surfaces. The seal is configured to be compressed along the entire sealing length of the sealing surface when the case lid portion is pivoted into the latched position. The compressed elastomeric seal provides a spring force that retains the latch in the latched position and a spring force that is resolved into sealing vectors perpendicular to the sealing surface along the entire length of the sealing surface to ensure a seal along the sealing surface.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: September 17, 2019
    Assignee: PAQ HOLDINGS, LLC
    Inventors: Cody Ziering, Brett Gelfand, Mark Rottenberg
  • Publication number: 20190275336
    Abstract: A method and apparatus for treatment of hypertension and heart failure by increasing secretion of endogenous atrial hormones by pacing of the heart. Pacing is done during the ventricular refractory period resulting in premature atrial contraction that does not result in ventricular contraction. Pacing results in the atrial wall stress, peripheral vasodilation, ANP secretion. Concomitant reduction of the heart rate is monitored and controlled as needed with backup pacing.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 12, 2019
    Inventors: Howard Levin, Mark Gelfand
  • Patent number: 10406366
    Abstract: A lead system and method of use for treating breathing disorders by the transvenous stimulation of the phrenic nerve. The lead is implanted in a vein near one portion of the phrenic nerve.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 10, 2019
    Assignee: RESPICARDIA, INC.
    Inventors: Randy W. Westlund, Mark Gelfand
  • Patent number: 10376312
    Abstract: Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: August 13, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Howard R. Levin, Mark Gelfand, Nicolas Zadno
  • Patent number: 10376308
    Abstract: A method for treating a heart failure patient by ablating a nerve of the splanchnic sympathetic nervous system to increase venous capacitance and reduce pulmonary blood pressure. A method including: inserting a catheter into a vein adjacent the nerve, applying stimulation energy and observing hemodynamic effects, applying ablation energy and observing hemodynamic effects, applying simulation energy after the ablation and observing hemodynamic effects.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: August 13, 2019
    Assignee: Axon Therapies, Inc.
    Inventors: Howard Levin, Mark Gelfand
  • Patent number: 10376516
    Abstract: Methods for treating a hypertensive human patient are disclosed herein. A method in accordance with one embodiment comprises delivering a neuromodulatory agent to a renal nerve of the patient via an intravascularly positioned drug delivery catheter. The method includes at least partially blocking neural activity along the renal nerve with the neuromodulatory agent, which results in a therapeutically beneficial reduction in blood pressure of the patient.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 13, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark Gelfand, Howard R. Levin
  • Patent number: 10369333
    Abstract: A method and apparatus for treatment of heart failure by increasing secretion of endogenous naturetic hormones ANP and BNP such as by stimulation of the heart atria. Heart pacing is done at an atrial contraction rate that is increased and can be higher than the ventricular contraction rate. Pacing may include mechanical distension of the right atrial appendage. An implantable device is used to periodically cyclically stretch the walls of the appendage with an implanted balloon.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 6, 2019
    Assignee: BackBeat Medical, Inc.
    Inventors: Howard Levin, Mark Gelfand
  • Publication number: 20190232055
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 1, 2019
    Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin
  • Publication number: 20190183569
    Abstract: Systems, devices, and methods for transvascular ablation of target tissue. The devices and methods may, in some examples, be used for splanchnic nerve ablation to increase splanchnic venous blood capacitance to treat at least one of heart failure and hypertension. For example, the devices disclosed herein may be advanced endovascularly to a target vessel in the region of a thoracic splanchnic nerve (TSN), such as a greater splanchnic nerve (GSN) or a TSN nerve root. Also disclosed are method of treating heart failure, such as HFpEF, by endovascularly ablating a thoracic splanchnic nerve to increase venous capacitance and reduce pulmonary blood pressure.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 20, 2019
    Inventors: Dorin PANESCU, Andrew WU, Zoar Jacob ENGELMAN, Mark GELFAND, Mark S. LEUNG, Howard LEVIN
  • Publication number: 20190183556
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda McMullin, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vicenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy