Patents by Inventor Mark George Allen

Mark George Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12097500
    Abstract: A sensor for detecting a target analyte in a sample includes a pair of conducting electrodes that are separated by a gap. An insulator is disposed in the gap between the electrodes. Plural wells are defined by one of the electrodes and the insulator, to expose the other of the electrodes. The wells are configured to receive a sample including a target analyte. The target analyte, when present in the sample received in the wells, modulates an impedance between the electrodes. The modulated impedance, which is measurable with an applied electrical voltage, is indicative of the concentration of the target analyte in the sample. The wells can include antibodies immobilized inside the wells, to bind the target analyte, which can be a cytokine. Also provided are a method for label-free sensing of a target analyte in a sample, and a transcutaneous impedance sensor for label-free, in-situ biomarker detection.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: September 24, 2024
    Assignees: Rutgers, The State University of New Jersey, The Trustees of the University of Pennsylvania
    Inventors: Pengfei Xie, Mehdi Javanmard, Mark George Allen, Wen Shen, Naixin Song
  • Publication number: 20240312703
    Abstract: The subject matter described herein relates to laminated magnetic cores, methods of fabricating laminated magnetic cores, and electric devices using laminated magnetic cores. In some examples, a method for fabricating a laminated magnetic core includes depositing a first magnetic layer and depositing an interlamination layer of over the first magnetic layer. The interlamination layer comprises a partially conducting material having a conductivity greater than or equal to 10?4 S/cm and less than or equal to 105 S/cm. The method includes depositing a second magnetic layer over the interlamination layer. The method can include sequentially depositing additional interlamination layers and additional magnetic layers in an alternating fashion to produce the laminated magnetic core.
    Type: Application
    Filed: May 21, 2024
    Publication date: September 19, 2024
    Inventors: Mark George Allen, Min Soo Kim
  • Patent number: 12020861
    Abstract: The subject matter described herein relates to laminated magnetic cores, methods of fabricating laminated magnetic cores, and electric devices using laminated magnetic cores. In some examples, a method for fabricating a laminated magnetic core includes depositing a first magnetic layer and depositing an interlamination layer of over the first magnetic layer. The interlamination layer comprises a partially conducting material having a conductivity greater than or equal to 10?4 S/cm and less than or equal to 105 S/cm. The method includes depositing a second magnetic layer over the interlamination layer. The method can include sequentially depositing additional interlamination layers and additional magnetic layers in an alternating fashion to produce the laminated magnetic core.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: June 25, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Mark George Allen, Min Soo Kim
  • Publication number: 20230374687
    Abstract: Methods and systems for producing metal/polymer multilayer microstructures. In some examples, a method includes method for fabricating a multilayer microstructure using sequential multilayer deposition. This method includes deposition of an active metal containing desired physical, mechanical, and/or electrical properties, followed by the deposition of a protective layer of an inert metal. Subsequently, a polymer layer is deposited in which the deposition bath chemistry and conditions are optimized to control the growth direction and rate of the polymerization and thus the morphology of the layer. This is defined as the morphological polymer layer. A film of the same polymer with different polymerization conditions is then deposited such that a proper interface for subsequent metal deposition is created; this is the interfacial polymer layer. Lastly, the interfacial polymer layer is activated by deposition of a thin pure metal on the surface, creating an optimal substrate for the next active metal layer.
    Type: Application
    Filed: September 10, 2021
    Publication date: November 23, 2023
    Inventors: Mark George Allen, Michael Joseph Synodis, Jun Beom Pyo
  • Publication number: 20210383958
    Abstract: In some examples, a patterned magnetic core includes a first sub-score and at least one second sub-core. The first and second sub-cores are spaced apart by a gap, optionally filled with material of sufficiently low electrical conductivity. Each of the first and second sub-scores includes a number of magnetic layers and a number of interlamination layers disposed between the magnetic layers in an alternating fashion.
    Type: Application
    Filed: October 28, 2019
    Publication date: December 9, 2021
    Inventors: Mark George Allen, Min Soo Kim
  • Publication number: 20200335275
    Abstract: The subject matter described herein relates to laminated magnetic cores, methods of fabricating laminated magnetic cores, and electric devices using laminated magnetic cores. In some examples, a method for fabricating a laminated magnetic core includes depositing a first magnetic layer and depositing an interlamination layer of over the first magnetic layer. The interlamination layer comprises a partially conducting material having a conductivity greater than or equal to 10?4 S/cm and less than or equal to 105 S/cm. The method includes depositing a second magnetic layer over the interlamination layer. The method can include sequentially depositing additional interlamination layers and additional magnetic layers in an alternating fashion to produce the laminated magnetic core.
    Type: Application
    Filed: May 25, 2017
    Publication date: October 22, 2020
    Inventors: Mark George Allen, Min Soo Kim
  • Publication number: 20200261907
    Abstract: A sensor for detecting a target analyte in a sample includes a pair of conducting electrodes that are separated by a gap. An insulator is disposed in the gap between the electrodes. Plural wells are defined by one of the electrodes and the insulator, to expose the other of the electrodes. The wells are configured to receive a sample including a target analyte. The target analyte, when present in the sample received in the wells, modulates an impedance between the electrodes. The modulated impedance, which is measurable with an applied electrical voltage, is indicative of the concentration of the target analyte in the sample. The wells can include antibodies immobilized inside the wells, to bind the target analyte, which can be a cytokine. Also provided are a method for label-free sensing of a target analyte in a sample, and a transcutaneous impedance sensor for label-free, in-situ biomarker detection.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 20, 2020
    Inventors: Pengfei Xie, Mehdi Javanmard, Mark George Allen, Wen Shen, Naixin Song