Patents by Inventor Mark Gregory Goode

Mark Gregory Goode has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8420754
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: April 16, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 7915357
    Abstract: Disclosed herein are various processes, including continuous fluidized-bed gas-phase polymerization processes for making a high strength, high density polyethylene copolymer, comprising (including): contacting monomers that include ethylene and optionally at least one non-ethylene monomer with fluidized catalyst particles in a gas phase in the presence of hydrogen gas at an ethylene partial pressure of 100 psi or more and a polymerization temperature of 105° C. or less to produce a polyethylene copolymer having a density of 0.945 g/cc or more and an ESCR Index of 1.0 or more wherein the catalyst particles are prepared at an activation temperature of 700° C. or less, and include silica, chromium, and titanium.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: March 29, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Kevin Joseph Cann, Ronald S. Eisinger, Mark Gregory Goode, John H. Moorhouse, Cliff R. Mure, Stephen P. Jaker, Maria A. Apecetche
  • Publication number: 20110060111
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, JR., Maria Apecetche
  • Publication number: 20100160580
    Abstract: Disclosed herein are various processes, including continuous fluidized-bed gas-phase polymerization processes for making a high strength, high density polyethylene copolymer, comprising (including): contacting monomers that include ethylene and optionally at least one non-ethylene monomer with fluidized catalyst particles in a gas phase in the presence of hydrogen gas at an ethylene partial pressure of 100 psi or more and a polymerization temperature of 105° C. or less to produce a polyethylene copolymer having a density of 0.945 g/cc or more and an ESCR Index of 1.0 or more wherein the catalyst particles are prepared at an activation temperature of 700° C. or less, and include silica, chromium, and titanium.
    Type: Application
    Filed: February 26, 2010
    Publication date: June 24, 2010
    Applicant: Univation Technologies, LLC
    Inventors: Kevin Joseph Cann, Ronald S. Eisinger, Mark Gregory Goode, John H. Moorhouse, Cliff R. Mure, Stephen P. Jaker, Maria A. Apecetche
  • Patent number: 7563851
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: July 21, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 7504463
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 17, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 6989344
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: January 24, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 6956089
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: October 18, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Patent number: 6956094
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: October 18, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Patent number: 6858684
    Abstract: This invention relates to processes for transitioning among polymerization catalyst systems, preferably catalyst systems, which are incompatible with each other. Particularly, the invention relates to processes for transitioning among olefin polymerization reactions utilizing Ziegler-Natta catalyst systems, metallocene catalyst systems and chromium-based catalyst systems.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: February 22, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Ian D. Burdett, Ping P. Cai, Ronald Steven Eisinger, Mark Gregory Goode, F. David Hussein, Michael Allen Kinnan, Michael Elroy Muhle, James L. Swecker, II
  • Patent number: 6846886
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: January 25, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Patent number: 6841630
    Abstract: Processes for transitioning among polymerization catalyst systems, preferably catalyst systems, which are incompatible with each other. Particularly, processes for transitioning among olefin polymerization reactions utilizing silyl-chromate catalyst systems and metallocene catalyst systems.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: January 11, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Kersten Anne Terry, Mark Gregory Goode, Daniel E. Wente, John Chirillo, Jr., Simon Mawson, Jose Fernando Cevallos-Candau
  • Patent number: 6833417
    Abstract: A process of transitioning from a first polymerization reaction conducted in the presence of a mixed catalyst system to a second polymerization reaction conducted in the presence of a chrome-based catalyst system is disclosed, the polymerization reactions being conducted in one embodiment in a polymerization zone of a gas phase fluidized bed reactor which contains a fluidized bed of polymer particles by the essentially continuous passage of monomer gases through the polymerization zone, comprising: a) discontinuing the introduction of the mixed catalyst system into the reactor; b) maintaining polymerization conditions in the reactor and permitting polymerization to continue for a period of time to allow the components of the mixed catalyst system present in the reactor to produce additional polymer particles; c) introducing a deactivating agent into the fluidized bed in an amount sufficient to deactivate the mixed catalyst system; d) establishing optimal conditions within the reactor for the chrome-based
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: December 21, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Fred David Ehrman, Mark Bradley Davis, Ronald Steven Eisinger, Mark Gregory Goode, Michael Allen Kinnan
  • Publication number: 20040254312
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Application
    Filed: February 5, 2004
    Publication date: December 16, 2004
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Patent number: 6831140
    Abstract: The invention relates to a method for evaluating the condition of a fluidized bed reactor by examining the condition of the reactor wall. Specifically, the invention relates to a method for measuring static in the reactor using a static probe that is located at the distributor plate and comprises a distributor plate cap. The invention also relates to methods of determining a static level using a radio frequency (rf). The static measurements are provided to indicate or predict major continuity disturbances in the fluidized bed gas phase reactor.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: December 14, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Michael Elroy Muhle, Robert Olds Hagerty, John Francis Szul, Mark Gregory Goode, Laurence G. Britton
  • Patent number: 6825287
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: November 30, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Publication number: 20040214969
    Abstract: A process of transitioning from a first polymerization reaction conducted in the presence of a mixed catalyst system comprising to a second polymerization reaction conducted in the presence of a chrome-based catalyst system is disclosed, the polymerization reactions being conducted in one embodiment in a polymerization zone of a gas phase fluidized bed reactor which contains a fluidized bed of polymer particles by the essentially continuous passage of monomer gases through the polymerization zone, comprising:
    Type: Application
    Filed: April 29, 2004
    Publication date: October 28, 2004
    Inventors: Fred David Ehrman, Mark Bradley Davis, Ronald Steven Eisinger, Mark Gregory Goode, Michael Allen Kinnan
  • Publication number: 20040162402
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Application
    Filed: February 5, 2004
    Publication date: August 19, 2004
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Publication number: 20040143076
    Abstract: Processes for transitioning among polymerization catalyst systems, preferably catalyst systems, which are incompatible with each other. Particularly, processes for transitioning among olefin polymerization reactions utilizing silyl-chromate catalyst systems and metallocene catalyst systems.
    Type: Application
    Filed: November 17, 2003
    Publication date: July 22, 2004
    Inventors: Kersten Anne Terry, Mark Gregory Goode, Daniel E. Wente, John Chirillo, Simon Mawson, Jose Fernando Cevallos-Candau
  • Publication number: 20040138391
    Abstract: This invention relates to processes for transitioning among polymerization catalyst systems, preferably catalyst systems, which are incompatible with each other. Particularly, the invention relates to processes for transitioning among olefin polymerization reactions utilizing Ziegler-Natta catalyst systems, metallocene catalyst systems and chromium-based catalyst systems.
    Type: Application
    Filed: November 17, 2003
    Publication date: July 15, 2004
    Inventors: Ian D. Burdett, Ping P. Cai, Ronald Steven Eisinger, Mark Gregory Goode, F. David Hussein, Michael Allen Kinnan, Michael Elroy Muhle, James L. Swecker