Patents by Inventor Mark Gryzwa

Mark Gryzwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405329
    Abstract: Patient treatment systems and methods for sensing cardiac depolarization and/or stimulating the carotid sinus nerve are disclosed herein. Exemplary patient treatment systems can include a neuromodulator and an implantable signal delivery device electrically coupleable to the neuromodulator. The signal delivery device comprises a lead body including a first region, a second region positionable over the first region, and lead electrodes. The patient treatment system further comprises computer-readable media having instructions that cause the patient treatment system to perform operations comprising: (i) obtaining a physiological parameter of the patient, (ii) generating neuromodulation pulses based on the obtained physiological parameter, and (iii) delivering the neuromodulation pulses to the CSN afferent fibers via one or more of the lead electrodes. The physiological parameter can include at least one of blood pressure, heart rate, bioimpedance, or activity level of the patient.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 21, 2023
    Inventors: Molly Wade, Mark Gryzwa, Eric Lovett, Adam W. Cates
  • Patent number: 11173312
    Abstract: Techniques for configuring electrical stimulation therapy parameters is described. Based on user input, processing circuitry may keep a first therapy parameter substantially constant and increase a value of a second therapy parameter until increasing the second therapy parameter further causes the second therapy parameter to be bigger than threshold value. The processing circuitry may adjust the second therapy parameter value and adjust the first therapy parameter value. Prior to adjustment, the first and second therapy parameters set a first intensity, and after adjustment, the first and second therapy parameters set a second intensity that is greater than or equal to the first intensity. The processing circuitry causes delivery of therapy at the second intensity.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Mark Gryzwa, Farshad Esnaashari, Scott Hawkins, Hector Cantua, Shannon Collins
  • Publication number: 20200306549
    Abstract: Techniques for configuring electrical stimulation therapy parameters is described. Based on user input, processing circuitry may keep a first therapy parameter substantially constant and increase a value of a second therapy parameter until increasing the second therapy parameter further causes the second therapy parameter to be bigger than threshold value. The processing circuitry may adjust the second therapy parameter value and adjust the first therapy parameter value. Prior to adjustment, the first and second therapy parameters set a first intensity, and after adjustment, the first and second therapy parameters set a second intensity that is greater than or equal to the first intensity. The processing circuitry causes delivery of therapy at the second intensity.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Mark Gryzwa, Farshad Esnaashari, Scott Hawkins, Hector Cantua, Shannon Collins
  • Patent number: 9269251
    Abstract: A communicator facilitates communications with a remote server via a wireless network supporting a plurality of disparate data transport mechanisms having differing characteristics. A processor coupled to memory is disposed in a communicator housing, which is configured for portability. The memory stores wireless radio firmware and data transfer instructions that are executable by the processor for transferring data to the remote server in accordance with a priority level. The priority level is based in part on criticality of the data and the communicator status. A radio disposed in the housing effects communications via the wireless network in accordance with the firmware. A power source in the housing supplies power for communicator components. The processor executes program instructions for selecting a data transport mechanism among the plurality transport mechanisms based on the priority level, and transmits the data via the wireless network via the radio using the selected transport mechanism.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: February 23, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John LaLonde, William R. Mass, Kenneth P. Hoyme, David C. Johnson, Joseph E. Bange, Mark Gryzwa
  • Publication number: 20150206408
    Abstract: A communicator facilitates communications with a remote server via a wireless network supporting a plurality of disparate data transport mechanisms having differing characteristics. A processor coupled to memory is disposed in a communicator housing, which is configured for portability. The memory stores wireless radio firmware and data transfer instructions that are executable by the processor for transferring data to the remote server in accordance with a priority level. The priority level is based in part on criticality of the data and the communicator status. A radio disposed in the housing effects communications via the wireless network in accordance with the firmware. A power source in the housing supplies power for communicator components. The processor executes program instructions for selecting a data transport mechanism among the plurality transport mechanisms based on the priority level, and transmits the data via the wireless network via the radio using the selected transport mechanism.
    Type: Application
    Filed: December 19, 2014
    Publication date: July 23, 2015
    Inventors: John LaLonde, William R. Mass, Kenneth P. Hoyme, David C. Johnson, Joseph E. Bange, Mark Gryzwa
  • Patent number: 8970392
    Abstract: A communicator facilitates communications with a remote server via a wireless network supporting a plurality of disparate data transport mechanisms having differing characteristics. A processor coupled to memory is disposed in a communicator housing, which is configured for portability. The memory stores wireless radio firmware and data transfer instructions that are executable by the processor for transferring data to the remote server in accordance with a priority level. The priority level is based in part on criticality of the data and the communicator status. A radio disposed in the housing effects communications via the wireless network in accordance with the firmware. A power source in the housing supplies power for communicator components. The processor executes program instructions for selecting a data transport mechanism among the plurality transport mechanisms based on the priority level, and transmits the data via the wireless network via the radio using the selected transport mechanism.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John LaLonde, William R. Mass, Kenneth P. Hoyme, David C. Johnson, Joseph E. Bange, Mark Gryzwa
  • Publication number: 20140062718
    Abstract: A communicator facilitates communications with a remote server via a wireless network supporting a plurality of disparate data transport mechanisms having differing characteristics. A processor coupled to memory is disposed in a communicator housing, which is configured for portability. The memory stores wireless radio firmware and data transfer instructions that are executable by the processor for transferring data to the remote server in accordance with a priority level. The priority level is based in part on criticality of the data and the communicator status. A radio disposed in the housing effects communications via the wireless network in accordance with the firmware. A power source in the housing supplies power for communicator components. The processor executes program instructions for selecting a data transport mechanism among the plurality transport mechanisms based on the priority level, and transmits the data via the wireless network via the radio using the selected transport mechanism.
    Type: Application
    Filed: November 5, 2013
    Publication date: March 6, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: John LaLonde, William R. Mass, Kenneth P. Hoyme, David C. Johnson, Joseph E. Bange, Mark Gryzwa
  • Patent number: 8395498
    Abstract: A portable patient communicator (PPC) includes a portable housing supporting a processor, memory for storing medical and wireless radio firmware, first and second radios, a processor, an identity module, and a power source. The PPC and a patient implantable medical device (PIMD) communicate via the first radio in accordance with the medical firmware. The PPC communicates with a wireless network via the second radio in accordance with the wireless radio firmware. Data stored in the identity module is used to authenticate the PPC by the remote server prior to permitting PPC access to the remote server, and may also be used to authenticate the remote server by the PPC prior to permitting access to the PPC or the PIMD by the remote server or other device communicatively coupled to the wireless network, after which PIMD and other medical data is exchanged between the PPC and remote server.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: March 12, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert Gaskill, Mark Gryzwa, John LaLonde, Kenneth Hoyme, William Mass, David C. Johnson, Mike Barton
  • Patent number: 8373556
    Abstract: A portable patient communicator (PPC) includes a portable housing that supports a processor coupled to memory for storing medical firmware and wireless radio firmware, first and second radios, a processor, and a power source. Communications between a patient implantable medical device (PIMD) and the first radio of the PPC are effected in accordance with program instructions of the medical firmware, and communications between the second radio of the PPC and the wireless network are effected in accordance with program instructions of the wireless radio firmware. Data from the PIMD is received via the first radio to which a priority level is assigned, such as in a tiered manner. A data transport mechanism is selected among disparate data transport mechanisms based at least in part on the priority level. PIMD data is transmitted to the wireless network using the selected transport mechanism via the second radio.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: February 12, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John R. LaLonde, William Mass, Kenneth P. Hoyme, David C. Johnson, Joe Bange, Mark Gryzwa
  • Publication number: 20110273287
    Abstract: A portable patient communicator (PPC) includes a portable housing that supports a processor coupled to memory for storing medical firmware and wireless radio firmware, first and second radios, a processor, and a power source. Communications between a patient implantable medical device (PIMD) and the first radio of the PPC are effected in accordance with program instructions of the medical firmware, and communications between the second radio of the PPC and the wireless network are effected in accordance with program instructions of the wireless radio firmware. Data from the PIMD is received via the first radio to which a priority level is assigned, such as in a tiered manner. A data transport mechanism is selected among disparate data transport mechanisms based at least in part on the priority level. PIMD data is transmitted to the wireless network using the selected transport mechanism via the second radio.
    Type: Application
    Filed: July 12, 2011
    Publication date: November 10, 2011
    Inventors: John LaLonde, William Mass, Kenneth Hoyme, David C. Johnson, Joe Bange, Mark Gryzwa
  • Patent number: 7978062
    Abstract: A portable patient communicator (PPC) includes a portable housing that supports a processor coupled to memory for storing medical firmware and wireless radio firmware, first and second radios, a processor, and a power source. Communications between a patient implantable medical device (PIMD) and the first radio of the PPC are effected in accordance with program instructions of the medical firmware, and communications between the second radio of the PPC and the wireless network are effected in accordance with program instructions of the wireless radio firmware. Data from the PIMD is received via the first radio to which a priority level is assigned, such as in a tiered manner. A data transport mechanism is selected among disparate data transport mechanisms based at least in part on the priority level. PIMD data is transmitted to the wireless network using the selected transport mechanism via the second radio.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John LaLonde, William Mass, Kenneth Hoyme, David C. Johnson, Joe Bange, Mark Gryzwa
  • Publication number: 20090063193
    Abstract: Portable patient communicators (PPCs) comprise a first radio configured to communicate wirelessly with a patient implantable medical device (PIMD) associated with the PPC and a second radio configured to communicate wirelessly with a network. Memory is configured to store at least first information about wireless connectivity between the PPC and its associated PIMD. A processor is coupled to the memory and the first and second radios. A power source is configured to supply power to components of the PPC. The processor is configured to coordinate discontinuous communication between the PPC and its associated PIMD via the first radio and coordinate discontinuous communication between the PPC and the network via the second radio. The processor is configured to coordinate wireless transmission of the first information to a remote server via the network, and the remote server receives second information about wireless connectivity between each of the PPCs and the network.
    Type: Application
    Filed: May 9, 2008
    Publication date: March 5, 2009
    Inventors: Mike Barton, Rob Parkinson, William Mass, Kenneth Hoyme, David C. Johnson, John LaLonde, Mark Gryzwa, Robert Gaskill
  • Publication number: 20090058636
    Abstract: A portable patient communicator (PPC) includes a portable housing supporting a processor, memory for storing medical and wireless radio firmware, first and second radios, a processor, an identity module, and a power source. The PPC and a patient implantable medical device (PIMD) communicate via the first radio in accordance with the medical firmware. The PPC communicates with a wireless network via the second radio in accordance with the wireless radio firmware. Data stored in the identity module is used to authenticate the PPC by the remote server prior to permitting PPC access to the remote server, and may also be used to authenticate the remote server by the PPC prior to permitting access to the PPC or the PIMD by the remote server or other device communicatively coupled to the wireless network, after which PIMD and other medical data is exchanged between the PPC and remote server.
    Type: Application
    Filed: May 9, 2008
    Publication date: March 5, 2009
    Inventors: Robert Gaskill, Mark Gryzwa, John LaLonde, Kenneth Hoyme, William Mass, David C. Johnson, Mike Barton
  • Publication number: 20090058635
    Abstract: A portable patient communicator (PPC) includes a portable housing that supports a processor coupled to memory for storing medical firmware and wireless radio firmware, first and second radios, a processor, and a power source. Communications between a patient implantable medical device (PIMD) and the first radio of the PPC are effected in accordance with program instructions of the medical firmware, and communications between the second radio of the PPC and the wireless network are effected in accordance with program instructions of the wireless radio firmware. Data from the PIMD is received via the first radio to which a priority level is assigned, such as in a tiered manner. A data transport mechanism is selected among disparate data transport mechanisms based at least in part on the priority level. PIMD data is transmitted to the wireless network using the selected transport mechanism via the second radio.
    Type: Application
    Filed: May 9, 2008
    Publication date: March 5, 2009
    Inventors: John LaLonde, William Mass, Kenneth Hoyme, David C. Johnson, Joe Bange, Mark Gryzwa
  • Patent number: 7060030
    Abstract: This document discusses a system that includes an intermediary telemetry interface device for communicating between a cardiac rhythm management system or other implantable medical device and a programmer or other remote device. One example provides an inductive near-field communication link between the telemetry interface and the implantable medical device, and a radio-frequency (RF) far-field communication link between the telemetry interface device and the remote device. The telemetry interface device provides data buffering. In another example, the telemetry interface device includes a data processing module for compressing and/or decompressing data, or for extracting information from data. Such information extraction may include obtaining heart rate, interval, and/or depolarization morphology information from an electrogram signal received from the implantable medical device.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: June 13, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey A. Von Arx, Michael J. Lyden, William J. Linder, Scott T. Mazar, Allan T. Koshiol, Mark Gryzwa, Dorothy Nauman, Scott Hostine
  • Publication number: 20050065587
    Abstract: An implantable lead assembly includes a lead body extending from a proximal end to a distal, where the lead body has an intermediate portion therebetween. The lead body includes an insulating layer and a conductor disposed within the insulating layer. The insulating layer surrounds the conductor. An electrode is coupled to the lead body, and the electrode is in electrical communication with the conductor. At least one magnetic jacket is disposed within the insulating layer, and the at least one magnetic jacket surrounds the conductor.
    Type: Application
    Filed: September 24, 2003
    Publication date: March 24, 2005
    Inventor: Mark Gryzwa
  • Publication number: 20030191505
    Abstract: A feedthrough assembly for use in an implantable medical device that performs filtering of electromagnetic interference and can be easily manufactured. A magnetic structure is adapted to fit over a plurality of terminal pins of the feedthrough assembly within the device housing to provide inductive isolation from electromagnetic interference.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventors: Mark Gryzwa, Allen Novotny, David Chizek, Jason Sprain, Michael J. Lyden
  • Publication number: 20030130708
    Abstract: This document discusses a system that includes an intermediary telemetry interface device for communicating between a cardiac rhythm management system or other implantable medical device and a programmer or other remote device. One example provides an inductive near-field communication link between the telemetry interface and the implantable medical device, and a radio-frequency (RF) far-field communication link between the telemetry interface device and the remote device. The telemetry interface device provides data buffering. In another example, the telemetry interface device includes a data processing module for compressing and/or decompressing data, or for extracting information from data. Such information extraction may include obtaining heart rate, interval, and/or depolarization morphology information from an electrogram signal received from the implantable medical device.
    Type: Application
    Filed: January 8, 2002
    Publication date: July 10, 2003
    Inventors: Jeffrey A. Von Arx, Michael J. Lyden, William J. Linder, Scott T. Mazar, Allan T. Koshiol, Mark Gryzwa, Dorothy Nauman, Scott Hostine
  • Patent number: 6473649
    Abstract: An implantable cardiac rhythm management device capable of automatically detecting intrinsic and evoked response of a patient's heart and suitable for use during capture verification. The device of the present invention may operate in an automatic capture verification mode, wherein an electrocardiogram signal of a patient's heart is received and used by the device to determine whether a stimulation pulse evokes a response by the patient's heart. The device suspends the automatic capture verification mode and/or adjust the detection threshold dependent upon detected and/or measured noise, a determined amplitude of evoked response, a determined modulation in the evoked response, or detected and/or measured artifact. Further, the sensing circuit of the rhythm management device of the present invention reduces afterpotentials that result due to delivery of the stimulation pulses.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: October 29, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Mark Gryzwa, Qingsheng Zhu
  • Patent number: 6427085
    Abstract: A cardiac rhythm management device having a capture verification sensing circuit for use in either a normal beat to beat pacing mode or an autothreshold mode. The cardiac rhythm management device is coupled to one or more pacing leads having pacing/sensing electrodes coupled thereto, and includes a sensing circuit for sensing electrical activity of the patient's heart, wherein the sensing circuit includes a dedicated evoked response sense amplifier and at least one high pass coupling capacitor electrically connected as a portion of a high pass network and between a pacing/sensing electrode and a blanking switch. A plurality of high pass coupling capacitors are coupled in parallel each having a separate blanking switch, thereby creating a differential network to offset imbalance sensed from the electrode due to extraneous factors.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: July 30, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scot C. Boon, Mark Gryzwa, Michael Lyden, Qingsheng Zhu, Paul Haefner