Patents by Inventor Mark H. Hartmann

Mark H. Hartmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9434869
    Abstract: A viscose fiber comprises a fiber body including a regenerated cellulosic material and a plurality of microcapsules dispersed in the regenerated cellulosic material. The regenerated cellulosic material is derived from an organic plant material and the plurality of microcapsules containing a phase change material has a transition temperature in the range of 0° C. to 100° C., the phase change material providing thermal regulation based on at least one of absorption and release of latent heat at the transition temperature.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: September 6, 2016
    Assignee: OUTLAST TECHNOLOGIES, LLC
    Inventors: Mark H. Hartmann, James B. Worley, Matthew North
  • Publication number: 20130273365
    Abstract: A viscose fiber comprises a fiber body including a regenerated cellulosic material and a plurality of microcapsules dispersed in the regenerated cellulosic material. The regenerated cellulosic material is derived from an organic plant material and the plurality of microcapsules containing a phase change material has a transition temperature in the range of 0° C. to 100° C., the phase change material providing thermal regulation based on at least one of absorption and release of latent heat at the transition temperature.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Inventors: Mark H. Hartmann, James B. Worley, Matthew North
  • Publication number: 20100294980
    Abstract: A viscose fiber comprises a fiber body including a regenerated cellulosic material and a plurality of microcapsules dispersed in the regenerated cellulosic material. The regenerated cellulosic material is derived from an organic plant material and the plurality of microcapsules containing a phase change material has a transition temperature in the range of 0° C. to 100° C., the phase change material providing thermal regulation based on at least one of absorption and release of latent heat at the transition temperature.
    Type: Application
    Filed: August 4, 2010
    Publication date: November 25, 2010
    Applicant: OUTLAST TECHNOLOGIES, INC.
    Inventors: Mark H. Hartmann, James B. Worley, Matthew North
  • Publication number: 20100196707
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: January 5, 2010
    Publication date: August 5, 2010
    Applicant: Outlast Technologies, Inc.
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard, James E. Brang
  • Patent number: 7666502
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 23, 2010
    Assignee: Outlast Technologies, Inc.
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard
  • Patent number: 7666500
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 23, 2010
    Assignee: Outlast Technologies, Inc.
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard, James E. Brang
  • Patent number: 7579078
    Abstract: Cellulosic fibers having enhanced reversible thermal properties and applications of such cellulosic fibers are described. In one embodiment, a cellulosic fiber includes a fiber body including a cellulosic material and a set of microcapsules dispersed in the cellulosic material. The set of microcapsules contain a phase change material having a latent heat of at least 40 J/g and a transition temperature in the range of 0° C. to 100° C., and the phase change material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The cellulosic fiber can be formed via a solution spinning process, and can be used in various products where thermal regulating properties are desired.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: August 25, 2009
    Assignee: Outlast Technologies, Inc.
    Inventors: Mark H. Hartmann, James B. Worley, Matthew North
  • Patent number: 7241497
    Abstract: The invention relates to a multi-component fiber having enhanced reversible thermal properties and methods of manufacturing thereof. The multi-component fiber comprises a fiber body formed from a plurality of elongated members, at least one of the elongated members comprising a temperature regulating material dispersed therein. The temperature regulating material comprises a phase change material. The multi-component fiber may be formed via a melt spinning process or a solution spinning process and may be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber may be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: July 10, 2007
    Assignee: Outlast Technologies, Inc.
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard
  • Patent number: 7160612
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g and a transition temperature in the range of 22° C. to 40° C. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 9, 2007
    Assignees: Outlast Technologies, Inc., Hills, Inc.
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard
  • Patent number: 6855422
    Abstract: The invention relates to a multi-component fiber having enhanced reversible thermal properties and methods of manufacturing thereof. The multi-component fiber comprises a fiber body formed from a plurality of elongated members, at least one of the elongated members comprising a temperature regulating material dispersed therein. The temperature regulating material comprises a phase change material. The multi-component fiber may be formed via a melt spinning process or a solution spinning process and may be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber may be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: February 15, 2005
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard
  • Patent number: 6689466
    Abstract: A stabilized phase change composition comprises a phase change material and a stabilizing agent selected from the group consisting of antioxidants and thermal stabilizers. The stabilizing agent provides oxidative or thermal stabilization to the phase change material. The stabilized phase change composition may be used or incorporated in a variety of processes (e.g., melt spinning processes, extrusion processes, injection molding processes, and so forth) to form articles having enhanced reversible thermal properties. Exemplary articles that may be formed include, by way of example and not by limitation, synthetic fibers (e.g., nylon fibers, polyester fibers, polyethylene fibers, polypropylene fibers, and multi-component fibers), fabric materials, textiles, films, foams, sheets, pellets, granules, rods, and injection molded articles.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: February 10, 2004
    Assignee: Outlast Technologies, Inc.
    Inventor: Mark H. Hartmann
  • Publication number: 20030035951
    Abstract: The invention relates to a multi-component fiber having enhanced reversible thermal properties and methods of manufacturing thereof. The multi-component fiber comprises a fiber body formed from a plurality of elongated members, at least one of the elongated members comprising a temperature regulating material dispersed therein. The temperature regulating material comprises a phase change material. The multi-component fiber may be formed via a melt spinning process or a solution spinning process and may be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber may be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Application
    Filed: January 15, 2002
    Publication date: February 20, 2003
    Inventors: Monte C. Magill, Mark H. Hartmann, Jeffrey S. Haggard
  • Publication number: 20020054964
    Abstract: A stabilized phase change composition comprises a phase change material and a stabilizing agent selected from the group consisting of antioxidants and thermal stabilizers. The stabilizing agent provides oxidative or thermal stabilization to the phase change material. The stabilized phase change composition may be used or incorporated in a variety of processes (e.g., melt spinning processes, extrusion processes, injection molding processes, and so forth) to form articles having enhanced reversible thermal properties. Exemplary articles that may be formed include, by way of example and not by limitation, synthetic fibers (e.g., nylon fibers, polyester fibers, polyethylene fibers, polypropylene fibers, and multi-component fibers), fabric materials, textiles, films, foams, sheets, pellets, granules, rods, and injection molded articles.
    Type: Application
    Filed: September 21, 2001
    Publication date: May 9, 2002
    Inventor: Mark H. Hartmann
  • Patent number: 6353086
    Abstract: The invention relates to a lactic acid residue containing polymer composition and product having improved stability and to methods for the preparation and use thereof. The lactic acid residue containing polymer preferably includes a polylactide polymer having a number average molecular weight of between about 25,000 and about 200,000, lactide, if present at all, present in a concentration of less than 0.5 wt % based on the weight of the composition, and deactivating agents. Articles which can be manufactured from the lactic acid residue containing polymer composition include fibers, coated paper, films, moldings, and foam.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: March 5, 2002
    Assignee: Cargill, Incorporated
    Inventors: Jeffrey J. Kolstad, David R. Witzke, Mark H. Hartmann, Eric Stanley Hall, James Nangeroni
  • Patent number: 6183814
    Abstract: A coated paper product including a paper layer and a polymer layer, wherein the polymer layer includes a polylactide polymer composition having a ratio of Mz to Mn of greater than about 6. The polymer composition, when melted, exhibits a die swell of greater than about 1.25 for a melt flow index of greater than about 2. Polymer lactide compositions, methods of manufacturing the polymer composition and the coated paper product, and articles produced therefrom are also described.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: February 6, 2001
    Assignee: Cargill, Incorporated
    Inventors: James Nangeroni, Mark H. Hartmann, Matthew L. Iwen, Christopher Michael Ryan, Jeffrey J. Kolstad, Kevin T. McCarthy
  • Patent number: 6114495
    Abstract: The invention relates to a lactic acid residue containing polymer composition and product having improved stability and to methods for the preparation and use thereof. The lactic acid residue containing polymer preferably includes a polylactide polymer having a number average molecular weight of between about 25,000 and about 200,000, lactide, if present at all, present in a concentration of less than 0.5 wt % based on the weight of the composition, and deactivating agents. Articles which can be manufactured from the lactic acid residue containing polymer composition include fibers, coated paper, films, moldings, and foam.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: September 5, 2000
    Assignee: Cargill Incorporated
    Inventors: Jeffrey J. Kolstad, David R. Witzke, Mark H. Hartmann, Eric Stanley Hall, James Nangeroni
  • Patent number: 5594095
    Abstract: A composition comprising a polylactide polymer with improved extensional viscosity and methods of making the same are disclosed. The polylactide polymer composition is prepared by providing in the composition polylactide polymer molecules which have been modified, relative to linear non-substituted polylactide, to provide increased molecular interaction among polylactide backbone chains in the composition. The preferred polylactide polymer composition has a number average molecular weight of at least about 10,000 (preferably at least 50,000) and a polydispersity of at least about 2.5. In addition, the polylactide polymer composition should have a neck-in ratio of less than about 0.8.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: January 14, 1997
    Assignee: Cargill, Incorporated
    Inventors: Patrick R. Gruber, Jeffrey J. Kolstad, David R. Witzke, Mark H. Hartmann, Andrea L. Brosch