Patents by Inventor Mark H. Li

Mark H. Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240287225
    Abstract: In at least one embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin to a first catalyst system comprising activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The first alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more. The process includes introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition including an acid catalyst in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Application
    Filed: April 26, 2024
    Publication date: August 29, 2024
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Pramod J. Nandapurkar, Brian H. Wahn, Babak Lotfizadehdehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Publication number: 20230383022
    Abstract: Processes for making saturated isomerized polyalphaolefm by concurrently isomerizing and hydrogenating unsaturated polyalphaolefm in the presence of a high activity catalyst. Such processes can include contacting at least one unsaturated polyalphaolefm with a catalyst capable of both isomerizing and hydrogenating the polyalphaolefm, wherein the catalyst includes a zeolite or mesoporous material, the zeolite having a silica to alumina mole ratio of from about 5 to about 100 and an alpha value of from about 10 to about 1,000, and the mesoporous material having a collidine uptake of from about 100 ??moles/g to about 500 ?moles/g, wherein a Group VIB to VIIIB metal is incorporated in the catalyst at a concentration of from about 0.01 wt % to about 60.00 wt %, and wherein the zeolite is selected from the group consisting of ZSM-48, ZSM-23, ZSM-12, ZSM-35, ZSM-11, ZSM-57, Beta zeolite, Mordenite zeolite, USY zeolite, zeolite having a MWW framework, and combinations thereof.
    Type: Application
    Filed: November 8, 2021
    Publication date: November 30, 2023
    Inventors: Mark H. Li, Renyuan Yu, Patrick C. Chen, Anatoly I. Kramer, Wenyih F. Lai
  • Publication number: 20230167207
    Abstract: The present disclosure relates to processes to produce a poly alpha-olefin (PAO) composition. In some embodiments, a process includes introducing a first C6-C32 alpha-olefin, a second C6-C32 alpha-olefin different than the first C6-C32 alpha-olefin, and a first catalyst system comprising an activator and a metallocene compound into a first reactor, wherein a molar ratio of the first C6-C32 alpha-olefin to the second C6-C32 alpha-olefin is from about 1:5 to about 5:1, by total moles of the first and second C6-C32 alpha-olefin; obtaining a first effluent including a PAO dimer; introducing the first effluent, a third C6-C32 alpha-olefin, and a second catalyst system to an oligomerization unit, wherein the third C6-C32 alpha-olefin is the same or different than the first C6-C32 alpha-olefin and/or second C6-C32 alpha-olefin; obtaining a second effluent; and hydrogenating the second effluent to form the PAO composition.
    Type: Application
    Filed: April 28, 2021
    Publication date: June 1, 2023
    Inventors: Mark H. Li, Patrick C. Chen
  • Patent number: 11661465
    Abstract: The present disclosure generally relates to process to produce a poly alpha-olefin (PAO), comprising: a) introducing a first alpha-olefin to a first catalyst system comprising non-aromatic hydrocarbon soluble activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions, wherein the first alpha-olefin is preferably introduced to the reactor at a flow rate of about 100 g/hr or more, to form a first reactor effluent comprising PAO (such as at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more); and b) introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition comprising an acid catalyst, such as BF3, in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: May 30, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jennifer L. Rapp, Patrick C. Chen, Jo Ann M. Canich, Mark H. Li, Jian Yang, Catherine A. Faler, Margaret T. Whalley, Andrew E. Atalla
  • Patent number: 11525020
    Abstract: The present disclosure generally relates to processes to produce alpha-olefin oligomers and poly alpha-olefins. In an embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin and a first catalyst system comprising a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes PAO dimer comprising at least 96 mol % of vinylidene and 4 mol % or less of trisubstituted vinylene and disubstituted vinylene, based on total moles of vinylidene, trisubstituted vinylene, and disubstituted vinylene. The method includes introducing the first reactor effluent, a second alpha-olefin and a second catalyst composition comprising an acid catalyst into a second reactor under second reactor conditions to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 13, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Monica D. Lotz, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Publication number: 20220298087
    Abstract: The present disclosure provides processes and apparatus for producing poly alpha olefins. In at least one embodiment, a process to produce a poly alpha olefin includes introducing a first olefin monomer to a first catalyst and an activator in a first reactor to form a first reactor effluent comprising an olefin dimer and an olefin trimer. The process includes introducing the first reactor effluent to a filtration unit to form a filtration effluent, and introducing the filtration effluent to a first distillation unit to form a first distillation effluent. The process includes introducing the first distillation effluent (or a second distillation effluent) to a second catalyst in a second reactor to form a second reactor effluent comprising the olefin trimer. The process includes removing a sample at any stage of the process and introducing the sample to a gas chromatograph.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 22, 2022
    Inventors: Monica D. Lotz, Frank N. Raushel, Timothy M. Boller, Mark H. Li, Kyle G. Lewis, Jennifer L. Rapp
  • Publication number: 20220127392
    Abstract: The present disclosure generally relates to processes to produce alpha-olefin oligomers and poly alpha-olefins. In an embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin and a first catalyst system comprising a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes PAO dimer comprising at least 96 mol % of vinylidene and 4 mol % or less of trisubstituted vinylene and disubstituted vinylene, based on total moles of vinylidene, trisubstituted vinylene, and disubstituted vinylene. The method includes introducing the first reactor effluent, a second alpha-olefin and a second catalyst composition comprising an acid catalyst into a second reactor under second reactor conditions to form a second reactor effluent comprising PAO trimer.
    Type: Application
    Filed: June 28, 2021
    Publication date: April 28, 2022
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Monica D. Lotz, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Publication number: 20210284769
    Abstract: In at least one embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin to a first catalyst system comprising activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The first alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more. The process includes introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition including an acid catalyst in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 16, 2021
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Pramod J. Nandapurkar, Brian H. Wahn, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Patent number: 11078308
    Abstract: The present disclosure generally relates to processes to produce alpha-olefin oligomers and poly alpha-olefins. In an embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin and a first catalyst system comprising a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes PAO dimer comprising at least 96 mol % of vinylidene and 4 mol % or less of trisubstituted vinylene and disubstituted vinylene, based on total moles of vinylidene, trisubstituted vinylene, and disubstituted vinylene. The method includes introducing the first reactor effluent, a second alpha-olefin and a second catalyst composition comprising an acid catalyst into a second reactor under second reactor conditions to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: August 3, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Monica D. Lotz, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Patent number: 11028197
    Abstract: In at least one embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin to a first catalyst system comprising activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The first alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more. The process includes introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition including an acid catalyst in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: June 8, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Pramod J. Nandapurkar, Brian H. Wahn, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Publication number: 20210122859
    Abstract: The present disclosure generally relates to process to produce a poly alpha-olefin (PAO), comprising: a) introducing a first alpha-olefin to a first catalyst system comprising non-aromatic hydrocarbon soluble activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions, wherein the first alpha-olefin is preferably introduced to the reactor at a flow rate of about 100 g/hr or more, to form a first reactor effluent comprising PAO (such as at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more); and b) introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition comprising an acid catalyst, such as BF3, in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Inventors: Jennifer L. Rapp, Patrick C. Chen, Jo Ann M Canich, Mark H. Li, Jian Yang, Catherine A. Faler, Margaret T. Whalley, Andrew E. Atalla
  • Publication number: 20190359744
    Abstract: The present disclosure generally relates to processes to produce alpha-olefin oligomers and poly alpha-olefins. In an embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin and a first catalyst system comprising a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes PAO dimer comprising at least 96 mol % of vinylidene and 4 mol % or less of trisubstituted vinylene and disubstituted vinylene, based on total moles of vinylidene, trisubstituted vinylene, and disubstituted vinylene. The method includes introducing the first reactor effluent, a second alpha-olefin and a second catalyst composition comprising an acid catalyst into a second reactor under second reactor conditions to form a second reactor effluent comprising PAO trimer.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Monica D. Lotz, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang
  • Publication number: 20190359748
    Abstract: In at least one embodiment, a process to produce a poly alpha-olefin (PAO) includes introducing a first alpha-olefin to a first catalyst system comprising activator and a metallocene compound into a continuous stirred tank reactor or a continuous tubular reactor under first reactor conditions to form a first reactor effluent. The first alpha-olefin is introduced to the reactor at a flow rate of about 100 g/hr or more. The first reactor effluent includes at least 60 wt % of PAO dimer and 40 wt % or less of higher oligomers, where the higher oligomers are oligomers that have a degree of polymerization of 3 or more. The process includes introducing the first reactor effluent and a second alpha-olefin to a second catalyst composition including an acid catalyst in a second reactor to form a second reactor effluent comprising PAO trimer.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Inventors: Patrick C. Chen, Mark H. Li, Jennifer L. Rapp, Pramod J. Nandapurkar, Brian H. Wahn, Babak LotfizadehDehkordi, Craig J. Emett, Najeeb M. Kuzhiyil, Jian Yang