Patents by Inventor Mark Harrison Farley

Mark Harrison Farley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11110005
    Abstract: In some embodiments, an illuminated microsurgical instrument system includes a microsurgical instrument having a distally projecting tubular member arranged to perform a medical procedure. The tubular member has a distal tip and an outer surface, the outer surface having a flat surface formed therein. The instrument includes a sheath member surrounding a portion of the tubular member and extending toward the distal tip of the tubular member and an optical fiber extending along a length of the flat surface between the tubular member and the sheath member. The instrument may include an opening such as a slot in the distal end of the sheath member to direct exiting air away from the tip of the optical fiber. The instrument may further include a slack chamber, collar structure, and fiber guard member to support and guide the optical fiber to the distal tip.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: September 7, 2021
    Assignee: Alcon Inc.
    Inventors: Chenguang Diao, Mark Harrison Farley, Brian William McDonell, Alireza Mirsepassi, Michael J. Papac, Kambiz Parto, Ronald T. Smith, Barry L. Wheatley
  • Patent number: 11109938
    Abstract: Multi-fiber laser probes utilize relative motion of fibers and other laser probe elements to preserve small-gauge compatibility while providing for multi-spot beam deliver, or to provide for the selectively delivery of single-spot or multi-spot beam patterns. An example probe includes fibers having distal ends that are movable as a group onto a distal ramp element affixed to a distal end of a cannula, so that the distal ends of the fibers can be moved between a retracted position, in which the distal ends of the fibers are within the cannula or ramp element, and an extended position, in which distal ends of the fibers are guided by grooves or channels of the ramp so as to extend at least partially through external openings in the distal end of the laser probe and so as to be pointed angularly away from a longitudinal axis of the cannula.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 7, 2021
    Assignee: Alcon Inc.
    Inventors: Jochen Horn, Alireza Mirsepassi, Chenguang Diao, Mark Harrison Farley, Ronald T. Smith
  • Publication number: 20210255388
    Abstract: The present disclosure relates to a laser probe assembly coupled to a laser system through an optical fiber cable. In one example, the laser probe assembly comprises a probe tip coupled to the probe body, the probe tip housing multiple fibers. Each of the multiple fibers comprises a proximal end that couples to the laser system and a distal end that terminates in the probe tip, a single core for transporting a laser beam provided by the laser system, and a cladding surrounding the core. The laser probe assembly also comprises a lens for projecting multiple laser beams provided by the multiple fibers on to a surgical site. Within the probe tip, parts of outer surfaces of portions of any two adjacent fibers of the multiple fibers touch. Also, the multiple fibers are at least substantially centered with respect to the lens.
    Type: Application
    Filed: February 10, 2021
    Publication date: August 19, 2021
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Ronald T. Smith, Timothy C. Ryan
  • Publication number: 20200397614
    Abstract: An example multi-fiber, multi-spot laser probe comprises a plurality of fibers extending from a proximal end of the laser probe to at least near a distal end of the laser probe, where the proximal end of the laser probe is configured to be coupled to a laser source via an adapter interface, and a cannula having a distal end and surrounding the plurality of fibers along at least a portion of the laser probe at or near the distal end of the laser probe, where a distal end of each of the plurality of fibers is angle-polished so that the distal end of each fiber is angled relative to a longitudinal axis of the cannula and relative to a plane perpendicular to the longitudinal axis of the cannula. Additional embodiments employ lensed fibers, a distal window, ball lens, lens array, or faceted wedge.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Kambiz Parto, Ronald T. Smith
  • Patent number: 10869735
    Abstract: Provided herein is an illuminated microsurgical instrument system and an illuminated microsurgical instrument. In one implementation, the system includes a microsurgical instrument having a distally projecting tubular member arranged to perform a medical procedure at an interventional site. The tubular member has a distal tip and an outer surface, the outer surface having a flat surface formed therein. The instrument includes a sheath member surrounding a portion of the tubular member and extending toward the distal tip of the tubular member and an optical fiber extending along a length of the flat surface between the tubular member and the sheath member. The instrument may further include a slack chamber, collar structure, and fiber guard member to support and guide the optical fiber to the distal tip.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 22, 2020
    Assignee: Alcon Inc.
    Inventors: Chenguang Diao, Mark Harrison Farley, Brian William McDonell, Alireza Mirsepassi, Michael J. Papac, Kambiz Parto, Ronald T. Smith, Barry L. Wheatley
  • Publication number: 20200390603
    Abstract: Multi-fiber laser probes utilize relative motion of fibers and other laser probe elements to preserve small-gauge compatibility while providing for multi-spot beam deliver, or to provide for the selectively delivery of single-spot or multi-spot beam patterns. An example probe includes fibers having distal ends that are movable as a group onto a distal ramp element affixed to a distal end of a cannula, so that the distal ends of the fibers can be moved between a retracted position, in which the distal ends of the fibers are within the cannula or ramp element, and an extended position, in which distal ends of the fibers are guided by grooves or channels of the ramp so as to extend at least partially through external openings in the distal end of the laser probe and so as to be pointed angularly away from a longitudinal axis of the cannula.
    Type: Application
    Filed: August 26, 2020
    Publication date: December 17, 2020
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Ronald T. Smith
  • Publication number: 20200375660
    Abstract: Particular embodiments disclosed herein provide a surgical laser system comprising first laser source configured to emit a first laser beam with a first wavelength and a second laser source configured to emit a second laser beam with a second wavelength. The surgical laser system further comprises a first diffraction optical element (DOE) tuned to the first wavelength and a second DOE tuned to the second wavelength, wherein the first DOE is configured to diffract the first laser beam into one or more first diffracted beams at a diffraction angle and the second DOE is configured to diffract the second laser beam into one or more second diffracted beams at the same diffraction angle. The surgical laser system further comprises one or more beam splitters configured to reflect the one or more first diffracted beams and the one or more second diffracted beams onto a lens.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Inventors: Bruno Lassalas, Mark Harrison Farley, Alireza Mirsepassi, Ronald T. Smith
  • Publication number: 20200381892
    Abstract: Devices and methods are disclosed for an optical component mounting system for supporting an optical component such as a laser. The mounting system comprises a first component comprising a first surface, a second component comprising a second surface facing the first surface, and adhesive between the first surface of the first component and the second surface of the second component, wherein the first component comprises at least three mounting pads extending from the first surface for contacting the second surface of the second component and providing direct support between the first component and the second component. The component comprising the mounting pads may be a lower mount, an upper mount such as an upper clamping mount, or a bonding pad or other component in the stack of components. A method of assembling the stack of components may comprise curing the adhesive at a temperature at or above an upper end of an expected temperature operating range for the optical component mounting system.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Inventors: Ronald T. Smith, Alireza Mirsepassi, Mark Harrison Farley
  • Patent number: 10729461
    Abstract: A method and system provide a surgical infusion device including a cannula and an optical fiber coupled with the cannula. The cannula has a channel therethrough and an outside diameter. The channel has an inside diameter that is smaller than the outside diameter. The optical fiber is coupled with the cannula. At least a portion of the optical fiber coupled with the cannula has a diameter of not more than one half the inside diameter.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: August 4, 2020
    Assignee: Alcon Inc.
    Inventors: Mark Harrison Farley, Alireza Mirsepassi, Michael J. Papac
  • Patent number: 10610408
    Abstract: Systems and methods for assembling an illuminated infusion cannula involving an optical fiber support assembly with an optical fiber support tube and a positioning insert that couples within a cannula and that can position an optical fiber in the tip of the cannula while supporting substantially laminar and minimally-restricted fluid flow through the cannula.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Alcon Inc.
    Inventor: Mark Harrison Farley
  • Publication number: 20190321224
    Abstract: A pneumatic valve directs pressurized air to and air exhaust from a surgical implement, such as a dual actuation vitreous probe. The pneumatic valve includes an axially symmetric valve body configured to rotate from a first position, in which the pneumatic valve places a first port of the surgical implement in fluid communication with the pressurized air and a second port of the surgical implement in fluid communication with the air exhaust, to a second position, in which the pneumatic valve places the first port in fluid communication with the air exhaust and the second port in fluid communication with the pressurized air, and back to the first position, in one rotational direction. As such, the axially symmetric valve body continuously rotates in one rotational direction to alternate the pressurized air and the air exhaust between the two ports of the surgical implement to drive the dual actuation operation.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Inventor: Mark Harrison Farley
  • Publication number: 20190314111
    Abstract: In certain embodiments, an illuminating endoprobe system includes one or more light sources, a housing, a vitreous visualization fiber, and a general illumination fiber. The light sources generate a visualization light and an illumination light. The housing receives the visualization and illumination light, and has a probe tip with a probe axis. The vitreous visualization fiber transmits the visualization light through the probe tip. The visualization light has a visualization axis and a visualization beam angle at the probe tip. The general illumination fiber transmits the illumination light through the probe tip. The illumination light has an illumination axis and an illumination beam angle at the probe tip. The illumination beam angle is greater than the visualization beam angle, and the illumination axis is at an offset angle relative to the visualization axis, where the offset angle greater than 5 degrees.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 17, 2019
    Inventors: Bruno Lassalas, Chenguang Diao, Alireza Mirsepassi, Kambiz Parto, Mark Harrison Farley
  • Publication number: 20190209372
    Abstract: Provided herein is a probe for treating an eye of a patient. In one or more embodiments, the probe includes a body, and a tubular element having a main lumen extending from the body, the tubular element comprising a distal end. The probe further includes a visualization optical fiber within the main lumen, the visualization optical fiber adapted to emit an illumination provided by at least one of a plurality of light sources connected to the visualization optical fiber. In some embodiments, the probe further includes an optical switching system (e.g., a time-division multiplexor) operable with the plurality of light sources, wherein the optical switching system is adapted to independently control each of the plurality of light sources. By providing time-division multiplexing between different surgical light sources, quasi-simultaneous illumination delivery through the same optical path may be achieved.
    Type: Application
    Filed: December 14, 2018
    Publication date: July 11, 2019
    Inventor: Mark Harrison Farley
  • Publication number: 20190175407
    Abstract: Systems and methods for creating multi-spot laser light beams, multiplexing an illumination light and the multi-spot laser light beams, delivering the multiplexed light to a surgical handpiece via a multi-core optical fiber cable, and delivering the multiplexed light onto patient anatomy.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 13, 2019
    Inventors: Gerald David Bacher, Mark Harrison Farley, Alireza Mirsepassi, Ronald T. Smith
  • Publication number: 20190175406
    Abstract: The present disclosure relates to a multi-core optical fiber cable (MCF). In some embodiments, an MCF comprises a plurality of cores, a cladding surrounding the plurality of cores, wherein a refractive index of one or more of the plurality of cores is greater than a refractive index of the cladding, and a coating surrounding the cladding, a distal end free of the coating and having a reduced diameter. The MCF also comprise an annular gap formed between the distal end of the MCF and the inner surface of the cannula, wherein the concentricity of the distal end of the MCF with the inner passage of the cannula is maintained.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 13, 2019
    Inventors: Christopher Cook, Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Timothy C. Ryan
  • Publication number: 20190175405
    Abstract: The present disclosure relates to a multi-core optical fiber cable (MCF). In some embodiments, an MCF comprises a plurality of cores surrounded by a cladding and a coating surrounding the cladding, wherein a refractive index of one or more of the plurality of cores is greater than a refractive index of the cladding. The MCF further comprises a probe comprising a probe tip coupled with a distal end of the MCF and a lens located at a distal end of the probe tip. In some embodiments, the lens is configured to translate laser light from the distal end of the MCF to create a multi-spot pattern of laser beams on a target surface and a distal end of the MCF terminates at an interface with the lens.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 13, 2019
    Inventors: Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Ronald T. Smith, Dean Richardson
  • Publication number: 20190175273
    Abstract: Certain aspects of the present disclosure provide a thermally robust laser probe assembly comprising a cannula, wherein one or more optical fibers extend at least partially through the cannula for transmitting laser light from a laser source to a target location. The probe assembly further comprises a lens housed in the cannula and a protective component press-fitted to the distal end of the cannula, wherein the lens is positioned between the one or more optical fibers and the protective component.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 13, 2019
    Inventors: Christopher Cook, Chenguang Diao, Mark Harrison Farley, Alireza Mirsepassi, Kambiz Parto, Ronald T. Smith
  • Publication number: 20190142544
    Abstract: Multi-fiber laser probes utilize relative motion of fibers and other laser probe elements to preserve small-gauge compatibility while providing for multi-spot beam deliver, or to provide for the selectively delivery of single-spot or multi-spot beam patterns. An example probe includes fibers having distal ends that are movable as a group onto a distal ramp element affixed to a distal end of a cannula, so that the distal ends of the fibers can be moved between a retracted position, in which the distal ends of the fibers are within the cannula or ramp element, and an extended position, in which distal ends of the fibers are guided by grooves or channels of the ramp so as to extend at least partially through external openings in the distal end of the laser probe and so as to be pointed angularly away from a longitudinal axis of the cannula.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 16, 2019
    Inventors: Jochen Horn, Alireza Mirsepassi, Chenguang Diao, Mark Harrison Farley, Ronald T. Smith
  • Publication number: 20190046288
    Abstract: Provided herein are cannula devices that are self-illuminating to facilitate visualization of the cannula devices during a surgical procedure. The self-illuminating feature may be provided by phosphors incorporated into the cannula device, for example in the hub or sealing element of the cannula device. The cannula device may emit light of a specific color selected to correspond to a size of the cannula device.
    Type: Application
    Filed: July 10, 2018
    Publication date: February 14, 2019
    Inventors: Joshua Anderson, James Y. Chon, Mark Harrison Farley, Paul R. Hallen
  • Publication number: 20180338776
    Abstract: A method and system provide a surgical infusion device including a cannula and an optical fiber coupled with the cannula. The cannula has a channel therethrough and an outside diameter. The channel has an inside diameter that is smaller than the outside diameter. The optical fiber is coupled with the cannula. At least a portion of the optical fiber coupled with the cannula has a diameter of not more than one half the inside diameter.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 29, 2018
    Inventors: Mark Harrison Farley, Alireza Mirsepassi, Michael J. Papac