Patents by Inventor Mark Hartmann

Mark Hartmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160223269
    Abstract: A method is provided for manufacturing a polymeric film with thermal management capabilities. The method comprises mixing at least three compounds, wherein a first compound comprises a polymeric phase change material, a second compound comprises an additive, and a third compound comprises a molecule that, in its liquid form, acts as a solvent of the first and second compounds, and which is curable into a solid form as a polymer. Then, the method comprises applying a mixture of the first, second, and third compounds in a liquid form to a substrate, and curing the mixture into a solid state.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 4, 2016
    Inventors: Mark Hartmann, Joseph Kelly, Jason McClusky
  • Publication number: 20160226042
    Abstract: This disclosure provides a casing for the thermal management and protection of an electrochemical cell. The casing may comprise an inner surface configured to be in physical contact with at least a portion of an outer surface of an electrochemical cell. The inner surface may be substantially solid at room temperature. The casing may also comprise a polymer matrix which itself comprises two or more temperature management materials. At least one of the two or more temperature management materials may comprise a microencapsulated phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and at least one other of the two or more temperature management materials may comprise an elastomeric material. The polymer matrix may be substantially homogeneous.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 4, 2016
    Inventors: Mark Hartmann, Joseph Kelly
  • Publication number: 20160226114
    Abstract: This disclosure provides casings and materials for the thermal management and protection of an electrochemical cell. The casing may also comprise a composite polymeric material for electrochemical cell thermal management, the composite polymeric material comprising a crosslinked polyether polyol phase change material configured to be in physical contact with at least a portion of an electrochemical cell.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 4, 2016
    Inventors: Mark Hartmann, Joseph Kelly
  • Publication number: 20160212841
    Abstract: An electronic device having one or more components that generate heat during operation includes a structure for temperature management and heat dissipation. The structure for temperature management and heat dissipation comprises a heat transfer substrate having a surface that is in thermal communication with the ambient environment and a temperature management material in physical contact with at least a portion of the one or more components of the electronic device and at least a portion of the heat transfer substrate. The temperature management material comprises a polymeric phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and a thermal conductive filler.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Inventors: Mark Hartmann, Greg Roda
  • Patent number: 9392730
    Abstract: An electronic device having one or more components that generate heat during operation includes a structure for temperature management and heat dissipation. The structure for temperature management and heat dissipation comprises a heat transfer substrate having a surface that is in thermal communication with the ambient environment and a temperature management material in physical contact with at least a portion of the one or more components of the electronic device and at least a portion of the heat transfer substrate. The temperature management material comprises a polymeric phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and a thermal conductive filler.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: July 12, 2016
    Assignee: OUTLAST TECHNOLOGIES, LLC
    Inventors: Mark Hartmann, Greg Roda
  • Publication number: 20160177157
    Abstract: A method of producing a temperature regulating article is disclosed. The method includes combining a functional polymeric phase change material with a substrate. The functional polymeric PCM has the capability of absorbing or releasing heat to adjust heat transfer at or within a temperature stabilizing range and having at least one phase change temperature in the range between ?10° C. and 100° C. and a phase change enthalpy of at least 5 Joules per gram, the functional polymeric PCM has a backbone chain, side chains, and a crystallizable section. The side chains form the crystallizable section. The functional PCM carries at least one reactive function on at least one of the side chains or the backbone chain. The reactive function is capable of forming at least a first covalent bond with the second material or with a connecting compound capable of reacting with reactive functions of the second material.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 23, 2016
    Inventors: Mark Hartmann, Aharon Eyal
  • Patent number: 9371400
    Abstract: A material for energy management and peak energy reduction in a building structure, comprises an insulative base material, a first phase change material, and a functional polymeric phase change material that dynamically absorbs and releases heat to adjust heat transfer. The functional polymeric phase change material has at least one phase change temperature in the range between ?10° C. and 100° C. and a phase change enthalpy of at least 5 Joules per gram, the functional polymeric phase change material including a plurality of polymer chains that include a backbone chain and a plurality of side chains, wherein a first portion of the plurality of polymer chains are crosslinked to each other, wherein a second portion of the plurality of polymer chains are crosslinked with the first phase change material and a third portion of the plurality of side chains are mechanically entangled with the inorganic insulative base material.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 21, 2016
    Assignee: OUTLAST TECHNOLOGIES, LLC
    Inventors: Mark Hartmann, Greg Roda, Aharon Eyal
  • Patent number: 9234059
    Abstract: An article comprises a substrate and a functional polymeric phase change material bound to the substrate. In some aspects the functional polymeric phase change material is chemically bound to the substrate and can be accomplished by at least one of covalent bonding or electrovalent bonding. The functional polymeric phase change material can comprise a reactive function selected from the group consisting of an acid anhydride group, an alkenyl group, an alkynyl group, an alkyl group, an aldehyde group, an amide group, an amino group and their salts, a N-substituted amino group, an aziridine, an aryl group, a carbonyl group, a carboxy group and their salts, an epoxy group, an ester group, an ether group, a glycidyl group, a halo group, a hydride group, a hydroxy group, an isocyanate group, a thiol group, a disulfide group, a silyl or silane group, an urea group, and an urethane group, and wherein the substrate comprises at least one of cellulose, wool, fur, leather, polyester and nylon.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: January 12, 2016
    Assignee: OUTLAST TECHNOLOGIES, LLC
    Inventors: Mark Hartmann, Aharon Eyal
  • Publication number: 20150018480
    Abstract: Polymeric composites and methods of manufacturing polymeric composites are described. In one embodiment, a set of microcapsules containing a phase change material are mixed with a dispersing polymeric material to form a first blend. The dispersing polymeric material has a latent heat of at least 40 J/g and a transition temperature in the range of 0° C. to 50° C. The first blend is processed to form a polymeric composite. The polymeric composite can be formed in a variety of shapes, such as pellets, fibers, flakes, sheets, films, rods, and so forth. The polymeric composite can be used as is or incorporated in various articles where a thermal regulating property is desired.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 15, 2015
    Inventor: Mark Hartmann
  • Publication number: 20140221575
    Abstract: In accordance with one aspect a temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0° C. and 40° C.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 7, 2014
    Applicant: Outlast Technologies, LLC
    Inventors: Mark Hartmann, David E. Henton
  • Patent number: 8679627
    Abstract: Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof are described. In one embodiment, a multi-component fiber includes a fiber body formed from a set of elongated members, and at least one of the set of elongated members includes a temperature regulating material having a latent heat of at least 40 J/g. The temperature regulating material provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature. The multi-component fiber can be formed via a melt spinning process or a solution spinning process and can be used or incorporated in various products where a thermal regulating property is desired. For example, the multi-component fiber can be used in textiles, apparel, footwear, medical products, containers and packagings, buildings, appliances, and other products.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: March 25, 2014
    Assignee: Outlast Technologies LLC
    Inventors: Mark Hartmann, Jeffrey S. Haggard, Monte Christopher Magill, James E. Brang
  • Patent number: 8673448
    Abstract: In accordance with one aspect a temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0° C. and 40° C.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Outlast Technologies LLC
    Inventors: Mark Hartmann, David E. Henton
  • Publication number: 20140073210
    Abstract: An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material.
    Type: Application
    Filed: February 27, 2013
    Publication date: March 13, 2014
    Applicant: OUTLAST TECHNOLOGIES, LLC
    Inventors: Mark Hartmann, Aharon Eyal, Carmi Raz
  • Publication number: 20140043754
    Abstract: An electronic device having one or more components that generate heat during operation includes a structure for temperature management and heat dissipation. The structure for temperature management and heat dissipation comprises a heat transfer substrate having a surface that is in thermal communication with the ambient environment and a temperature management material in physical contact with at least a portion of the one or more components of the electronic device and at least a portion of the heat transfer substrate. The temperature management material comprises a polymeric phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and a thermal conductive filler.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: Outlast Technologies LLC
    Inventors: Mark Hartmann, Greg Roda
  • Patent number: 8587945
    Abstract: An electronic device having one or more components that generate heat during operation includes a structure for temperature management and heat dissipation. The structure for temperature management and heat dissipation comprises a heat transfer substrate having a surface that is in thermal communication with the ambient environment and a temperature management material in physical contact with at least a portion of the one or more components of the electronic device and at least a portion of the heat transfer substrate. The temperature management material comprises a polymeric phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and a thermal conductive filler.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 19, 2013
    Assignee: Outlast Technologies LLC
    Inventors: Mark Hartmann, Greg Roda
  • Patent number: 8404341
    Abstract: An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material. The containment structure may be a microcapsule or a particulate confinement material.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: March 26, 2013
    Assignee: Outlast Technologies, LLC
    Inventors: Mark Hartmann, Aharon Eyal, Carmi Raz
  • Publication number: 20130040526
    Abstract: A material for energy management and peak energy reduction in a building structure, comprises an insulative base material, a first phase change material, and a functional polymeric phase change material that dynamically absorbs and releases heat to adjust heat transfer. The functional polymeric phase change material has at least one phase change temperature in the range between ?10° C. and 100° C. and a phase change enthalpy of at least 5 Joules per gram, the functional polymeric phase change material including a plurality of polymer chains that include a backbone chain and a plurality of side chains, wherein a first portion of the plurality of polymer chains are crosslinked to each other, wherein a second portion of the plurality of polymer chains are crosslinked with the first phase change material and a third portion of the plurality of side chains are mechanically entangled with the inorganic insulative base material.
    Type: Application
    Filed: June 18, 2012
    Publication date: February 14, 2013
    Applicant: OUTLAST TECHNOLOGIES, INC.
    Inventors: Mark Hartmann, Greg Roda, Aharon Eyal
  • Publication number: 20120225290
    Abstract: In accordance with one aspect a temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0° C. and 40° C.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: Outlast Technologies, Inc.
    Inventors: Mark Hartmann, David E. Henton
  • Publication number: 20120195786
    Abstract: An apparatus and method for producing spheroidal metal particles having high size and shape uniformity from a melt from a highly reactive metal melt, with the following steps: melting the metal starting material under a hermetic seal; transporting the metal melt in a closed granulating tube from the melting furnace to at least one melt outlet; discharging the metal from the metal outlet via a rotary plate in the form of discrete drops to a melt stream which disintegrates into drops by the time it strikes the rotary plate; conducting a shielding gas flow into the region of the melt exiting from the melt outlet, collecting the melt on the rotary plate in the form of discrete melt drop, solidifying the melt drops into granule particles by contact with the colder surface of the rotary plate, and conducting the granule particles off the rotary plate for packaging/further processing.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 2, 2012
    Applicant: NON FERRUM GMBH
    Inventors: Harald Eibisch, Michael Grimm, Mathias Gruber, Mark Hartmann, Andreas Lohmueller, Michael Loos
  • Patent number: 8221910
    Abstract: In accordance with one aspect, a thermally regulating construction material comprises a base material and a polymeric phase change material bound to the base material, wherein the base material provides reversible temperature regulation properties to the building construction material. In accordance with another aspect, an insulation material for use in building construction comprises a base material and a polymeric phase change material bound to the base material, wherein the base material provides reversible temperature regulation properties to the insulation material. The base material may be selected from the group consisting of foam insulation, loose fill insulation, and batted insulation.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: July 17, 2012
    Assignee: Outlast Technologies, LLC
    Inventors: Mark Hartmann, Greg Roda, Aharon Eyal