Patents by Inventor Mark Hernandez

Mark Hernandez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7762465
    Abstract: A device for optically multiplexing a laser beam, having a glass plate construction with an input surface and an output surface, and bearing reflective and semi-reflective coatings arranged so as to optically multiplex an input laser beam entering the input surface, into multiple spatial-coherence reduced output laser beams exiting from the output surface. Through such optical multiplexing, and recombination, the coherence of the resulting laser beam is substantially reduced, as is the power of speckle pattern noise observed at an image detection array detecting an image of an object illuminated by said laser beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: July 27, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7731091
    Abstract: A digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging module for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging module includes a spectral-mixing based illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs, wherein the first and second fields of illumination spatially overlap and intermix with each other and produce a composite illumination field that is at least substantially coextensive with the FOV of the image sensing array.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: June 8, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7665665
    Abstract: A digital illumination and imaging system employing one or more planar laser illumination modules (PLIMs) each including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence. A digital image detection array for detecting digital images of an object illuminated by the composite substantially planar laser illumination beam.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 23, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7661597
    Abstract: A coplanar laser illumination and imaging subsystem deployable in an image capturing and processing system, and including an image formation and detection (IFD) subsystem having an image sensing array and optics providing a field of view (FOV) on the image sensing array, and forming an image of an object within the FOV and detecting said image on the image sensing array and producing a digital image thereof. The system includes a spectral-mixing based illumination subsystem having an array of VLDs for producing a visible illumination beam, and an array of infrared (IR) laser diodes (LDs) for producing an invisible illumination beam. The visible and invisible illumination beams spatially overlaps and spatially/temporally intermixes with each other to produce a composite spectrally-mixed illumination beam having a relative power ratio of visible illumination to invisible illumination (VIS/IR), and is substantially coplanar with the FOV of said image sensing array.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 16, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7651028
    Abstract: A digital image capture and processing system for automatically recognizing objects at a point of sale (POS) station. The system comprising a system housing having an imaging window, and containing a digital image capturing and processing engine including a plurality of coplanar illumination and imaging stations. The stations generate and project a complex of coplanar illumination and imaging planes through the imaging window, and within a 3D imaging volume definable relative to the imaging window for omni-directional imaging of objects passing through the 3D imaging volume, and generate digital linear images of the object as the object intersects coplanar illumination and imaging planes within the 3D imaging volume during system operation. A database is provided for storing one or more object libraries representing objects that can be recognized by the system.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: January 26, 2010
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Mikhail Veksland, Anatoly Kotlarsky, John Furlong, Mark Hernandez, Nicola Ciarlante, Mark Schmidt
  • Patent number: 7614560
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at a POS. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: November 10, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7588188
    Abstract: A digital image capturing and processing system including an image formation and detection (IFD) subsystem having a linear image sensing array and optics providing a field of view (FOV) on the linear image sensing array. A spectral-mixing based illumination subsystem produces a first field of visible laser illumination produced from an array of visible VLDs, and a second field of invisible laser illumination produced from an array of IR laser diodes (LDs) that spatially overlap and intermix with each other so as to produce a composite planar laser illumination beam which is substantially with the FOV of the linear image sensing array. An illumination control subsystem controls the spectral mixing of visible and invisible laser illumination produced from the spectral-mixing based illumination subsystem, by adaptively controlling the relative power ratio (VIS/IR) of said fields of visible and invisible laser illumination.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: September 15, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7575170
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises providing, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and a coplanar illumination and imaging station disposed within said system housing, for projecting a coplanar illumination and imaging plane through the imaging window into an imaging volume during object illumination and imaging operations. As the object is moved through the imaging volume, its motion is automatically detected, and signals indicative of said detected object are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible laser diodes (VLDs), simultaneously with a second field of invisible illumination from a array of infrared (IR) laser diodes (LDs).
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 18, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7571858
    Abstract: A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises a coplanar illumination and imaging station for projecting at least one coplanar illumination and imaging plane into an imaging volume during object illumination and imaging operations. The coplanar illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible VLDs, and producing a second field of invisible illumination from an array of infrared (IR) laser diodes (IR-LDs). Wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coplanar with the FOV of the linear image sensing array.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 11, 2009
    Assignee: Metrologic INstruemtns, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7546952
    Abstract: A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises provides, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: June 16, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7543749
    Abstract: A digital image capturing and processing system comprising a system housing having an imaging window, a plurality of coplanar illumination and imaging subsystems disposed in the system housing. Each coplanar illuminating and linear imaging station includes a dual-type coplanar linear illumination and imaging engine that supports automatic image formation and detection along each pair of coplanar illumination and imaging planes generated by the coplanar illuminating and linear imaging station. Each pair of coplanar illumination and imaging planes are projected into the 3D imaging volume, for capturing of linear digital images of objects moved therewithin, and subsequent processing thereof for recognizing information graphically represented in the captured linear digital images, and automatic imaging-processing based object motion and velocity detection within the 3D imaging volume.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: June 9, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Michael Veksland, Anatoly Kotlarsky, John Furlong, Mark Hernandez, Nicola Ciarlante, Mark Schmidt
  • Patent number: 7537165
    Abstract: An omni-directional digital image capturing and processing system for use in a POS environment, comprising a system housing having an imaging window, and a plurality of coplanar illumination and imaging stations, disposed in the system housing, for generating and projecting a complex of coplanar illumination and imaging planes through said imaging window. At least one area-type illumination and imaging station is also disposed in the system housing, for generating and projecting an area-type illumination and imaging zone through the imaging window, which intersects with the complex of coplanar illumination and imaging planes within a 3D imaging volume definable relative to the imaging window, for omni-directional digital imaging of objects passing through the 3D imaging volume.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: May 26, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Michael Veksland, Anatoly Kotlarsky, John Furlong, Mark Hernandez, Nicola Ciarlante, Mark Schmidt
  • Patent number: 7530497
    Abstract: Digital image capturing and processing system comprising a digital image capturing and processing module, and an integrated electronic weigh scale module having a load cell that is centrally located with respect to the digital image capturing and processing module. The digital image capturing and processing module electrically interfaces with the electronic weigh scale module by way of touch-fit electrical inter-connectors that automatically establish all electrical interconnections between the two modules when the digital image capturing and processing module is placed onto the electronic weigh scale module, and the electronic load cell bears the weight of the digital image capturing and processing module.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 12, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Michael Veksland, Anatoly Kotlarsky, John Furlong, Mark Hernandez, Nicola Ciarlante, Mark Schmidt
  • Publication number: 20090101718
    Abstract: A digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging module for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging module includes a spectral-mixing based illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs, wherein the first and second fields of illumination spatially overlap and intermix with each other and produce a composite illumination field that is at least substantially coextensive with the FOV of the image sensing array.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 23, 2009
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20090101719
    Abstract: A digital image capturing and processing system including a system housing having an imaging window; illumination and imaging stations for generating and projecting illumination and imaging planes or zones through the imaging window, and into a 3D imaging volume definable relative to the imaging window, for digital imaging an object passing through the 3D imaging volume, and generating digital linear images of the object as the object intersects the illumination and imaging planes or zones during system operation. A digital image processor processes the digital images and automatically recognizes graphical intelligence (e.g. bar code symbols, alphanumeric characters etc) graphically represented in the digital images.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 23, 2009
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Patent number: 7520433
    Abstract: A method for intelligently controlling the illumination and imaging of objects while being moved through a 3D imaging volume. As an object is being moved within the 3D imaging volume of a digital image capturing and processing system projecting a plurality of field of views (FOVs) through the 3D imaging volume, and prior to illumination and imaging. A projected trajectory is determined for the object through the 3D imaging volume. The FOVs which intersect with the projected trajectory of the object, passing through said 3D imaging volume, are determined. Only the determined FOVs are selectively illuminated as the object is moved along its projected trajectory through the FOVs, while digital linear images of the object are formed and detected, for storage and subsequent processing of information graphically represented in the digital linear images.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 21, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Michael Veksland, Anatoly Kotlarsky, John Furlong, Mark Hernandez, Nicola Ciarlante, Mark Schmidt
  • Patent number: 7516898
    Abstract: A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. Each station includes an array of planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV). The PLIB/FOV is projected through the 3D imaging volume, for capturing linear (1D) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: April 14, 2009
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Michael Veksland, Anatoly Kotlarsky, John Furlong, Mark Hernandez, Nicola Ciarlante, Mark Schmidt
  • Publication number: 20090065584
    Abstract: A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging station for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs. wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV of the image sensing array.
    Type: Application
    Filed: October 24, 2007
    Publication date: March 12, 2009
    Applicant: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Xiaoxun Zhu, Timothy Good, Tao Xian, Anatoly Kotlarsky, Michael Veksland, Mark Hernandez, John Gardner, Steven Essinger, Patrick Giordano, Sean Kearney, Mark Schmidt, John A. Furlong, Nicholas Ciarlante, Yong Liu, Jie Ren, Xi Tao, JiBin Liu, Ming Zhuo, Duane Ellis
  • Publication number: 20090069176
    Abstract: Removing metals from metal containing acidic solutions, such as contaminated waters and industrial wastewaters, is described. An amphipathic, heterocyclic, metal-coordinating compound (an extraordinary ligand) and a sorbent are added to a solution, such that the addition, at a specific acidic pH of the solution, causes at least some of the metal-coordinating compound to bind with some of the metal cations and at least some of the metal-coordinating compound sorbs to the sorbent, along with any metal cations bound therewith. The compound and the sorbent may be added to the solution, either together or independently, so that the compound may bind the metal. The metal binding compound may be a benzotriazole, a benzothiazole, or another compound to bind a metal. The sorbent is selected to interact with the metal-coordinating compound in sequestering the metal from solution as part of a complexation. Thereafter, the ligand-metal complex may be removed from the solution.
    Type: Application
    Filed: March 11, 2008
    Publication date: March 12, 2009
    Inventors: Mark Hernandez, Muna Ahmed Abu-Dalo
  • Patent number: D600427
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: September 22, 2009
    Inventor: Mark Hernandez