Patents by Inventor Mark Hoffbauer

Mark Hoffbauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7759229
    Abstract: A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Mark Hoffbauer, Elshan Akhadov
  • Publication number: 20090068821
    Abstract: A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.
    Type: Application
    Filed: May 22, 2008
    Publication date: March 12, 2009
    Inventors: Mark Hoffbauer, Alex Mueller
  • Patent number: 7393762
    Abstract: A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of at least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 1, 2008
    Assignee: Los Alamos National Secruity, LLC
    Inventors: Mark Hoffbauer, Alex Mueller
  • Publication number: 20070114124
    Abstract: A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of at least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 24, 2007
    Inventors: Mark Hoffbauer, Alex Mueller
  • Publication number: 20070114207
    Abstract: A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 24, 2007
    Inventors: Mark Hoffbauer, Elshan Akhadov
  • Publication number: 20050230673
    Abstract: The present invention is directed to light emitting devices including a first layer of a semiconductor material from the group of a p-type semiconductor and a n-type semiconductor, a layer of colloidal nanocrystals on the first layer of a semiconductor material, and, a second layer of a semiconductor material from the group of a p-type semiconductor and a n-type semiconductor on the layer of colloidal nanocrystals.
    Type: Application
    Filed: March 25, 2005
    Publication date: October 20, 2005
    Inventors: Alexander Mueller, Mark Hoffbauer, Victor Klimov