Patents by Inventor Mark J. Beesley

Mark J. Beesley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956898
    Abstract: Structures that implement three-dimensional (3D) conductive material (e.g., copper) in printed circuit boards (PCBs) are disclosed. 3D (three-dimensional) conductive material may include trenches and/or buried vias that are filled with conductive material in the PCBs. Trenches may be formed in build-up layers of a PCB by overlapping multiple laser drilled vias. The trenches may be filled with conductive material using electroplating process(es). Buried vias may be formed through the core layers of the PCB by mechanical drilling. The buried via may be filled with solid conductive material using a combination of electroless plating and electrolytic plating of conductive material. Various PCB structures are disclosed that implement combinations of these trenches and/or these buried vias filled with conductive material.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: April 9, 2024
    Assignee: Apple Inc.
    Inventors: Anne M. Mason, Chad O. Simpson, William Hannon, Mark J. Beesley
  • Publication number: 20220346228
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 11388817
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: July 12, 2022
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20220104346
    Abstract: Printed circuit boards (PCB) used to mechanically and electrically connect electrical components within an electronic device. Thin printed circuit boards (PCB) may be desirable to manufacturers and users of electronic devices. Accordingly, a process for manufacturing a printed circuit board may involve manufacturing a thin bilayer dielectric. The process may involve applying a first non-conductive layer to a metal substrate, and curing the first non-conductive layer to a C-stage resin layer that is fully cross-linked layer in a clean environment. In turn, a B-stage layer that is partially cured may be applied to the C-stage resin layer. Using a hot press, one or more metal traces may be pressed onto the B-stage layer. The B-stage resin layer may be fully cross-linked and integrated with the C-stage resin layer after lamination of the one or more metal traces and the B-stage resin layer.
    Type: Application
    Filed: April 21, 2021
    Publication date: March 31, 2022
    Inventors: Mark J. Beesley, Meng Chi Lee, Nima Shahidi, Hao Shi, Quan Qi
  • Publication number: 20220095455
    Abstract: Structures that implement three-dimensional (3D) conductive material (e.g., copper) in printed circuit boards (PCBs) are disclosed. 3D (three-dimensional) conductive material may include trenches and/or buried vias that are filled with conductive material in the PCBs. Trenches may be formed in build-up layers of a PCB by overlapping multiple laser drilled vias. The trenches may be filled with conductive material using electroplating process(es). Buried vias may be formed through the core layers of the PCB by mechanical drilling. The buried via may be filled with solid conductive material using a combination of electroless plating and electrolytic plating of conductive material. Various PCB structures are disclosed that implement combinations of these trenches and/or these buried vias filled with conductive material.
    Type: Application
    Filed: December 11, 2020
    Publication date: March 24, 2022
    Inventors: Anne M. Mason, Chad O. Simpson, William Hannon, Mark J. Beesley
  • Publication number: 20210185808
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10959331
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 23, 2021
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20200329559
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10701802
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 30, 2020
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Publication number: 20200084886
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10485103
    Abstract: An item may include fabric having insulating and conductive yarns or other strands of material. The conductive strands may form signal paths. Electrical components can be mounted to the fabric. Each electrical component may have an electrical device such as a semiconductor die that is mounted on an interposer substrate. The interposer may have contacts that are soldered to the conductive strands. A protective cover may encapsulate portions of the electrical component. To create a robust connection between the electrical component and the fabric, the conductive strands may be threaded through recesses in the electrical component. The recesses may be formed in the interposer or may be formed in a protective cover on the interposer. Conductive material in the recess may be used to electrically and/or mechanically connect the conductive strand to a bond pad in the recess. Thermoplastic material may be used to seal the solder joint.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, David M. Kindlon, Michael B. Nussbaum, Andrew L. Rosenberg, Andrew Sterian, Breton M. Saunders, Christopher A. Schultz, David A. Bolt, Mark J. Beesley, Peter W. Mash, Steven Keating, Chang Liu, Lan Hoang
  • Patent number: 10455707
    Abstract: Described herein are printed circuit boards (PCBs), PCB assemblies, and methods of manufacture thereof, which allow free placement of electrical components. The PCBs may have electrical pads that may couple to components through via-based connections and without the use of solder. The electrical components may be physically attached to the PCBs through tight fitting, lamination, and/or the use of adhesives. The distance between adjacent vias may be reduced, as accidental short-circuit risks due to solder bridging and similar effects are mitigated when the soldering process is bypassed. The PCB design and component placement may be flexible as to allow the use of electrical components with custom shape and/or customized terminal placement.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: October 22, 2019
    Assignee: APPLE INC.
    Inventors: Kenneth Leland Kiplinger, Mark J. Beesley, Shawn Xavier Arnold, Shyam Harindralal Ratnayake, Meng Chi Lee
  • Patent number: 10420213
    Abstract: Printed circuit boards having an increased density of vertical interconnect paths, as well as methods for their manufacture. One example may provide a printed circuit board having an increased density of vertical interconnect paths by forming a plurality of segmented vias. The segmented vias may extend through interior layers of the printed circuit board. The segmented vias may be formed of portions of vias in the interior layers of the printed circuit board. An area between three or more segmented vias may be filled with resin or other material or materials.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Mark J. Beesley, Albert A. Onderick, II, Anne M. Mason, Craig A. Gammel, Shawn X. Arnold
  • Publication number: 20190075653
    Abstract: Printed circuit boards having an increased density of vertical interconnect paths, as well as methods for their manufacture. One example may provide a printed circuit board having an increased density of vertical interconnect paths by forming a plurality of segmented vias. The segmented vias may extend through interior layers of the printed circuit board. The segmented vias may be formed of portions of vias in the interior layers of the printed circuit board. An area between three or more segmented vias may be filled with resin or other material or materials.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 7, 2019
    Applicant: Apple Inc.
    Inventors: Mark J. Beesley, Albert A. Onderick, II, Anne M. Mason, Craig A. Gammel, Shawn X. Arnold
  • Patent number: 10191550
    Abstract: An electronic device may have haptic output devices based on shape memory alloy wire. The electronic device may have control circuitry that supplies current to the shape memory alloy wire to heat and thereby contract the shape memory wire to create vibrations for a user's finger. The vibrations may serve as haptic feedback in a device such as a keyboard, a strap with embedded buttons, or other electronic devices. The shape memory alloy wire may run between upper and lower fabric layers in a spacer fabric, may form loops that attached to a fabric layer, or may be tensioned across an opening in a printed circuit or other rigid support structure.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: January 29, 2019
    Assignee: Apple Inc.
    Inventors: Michael B. Nussbaum, Mark J. Beesley, Daniel D. Sunshine, Christopher A. Schultz, Daniel A. Podhajny