Patents by Inventor Mark J. Bly

Mark J. Bly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7887661
    Abstract: Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: February 15, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Jessica G. Chiu, Gregory Waimong Chan, Gabriel Asongwe, Robert C. Esselstein, Douglas Gesswein, Srinivasan Sridharan, Nianjiong Joan Bei, William E. Webler, Stephen G. Schaible, Mina Chow, Yan Shen, Hongzhi Bai, Mark J. Bly, Thomas R. Hatten
  • Patent number: 7819883
    Abstract: An apparatus for performing a minimally-invasive surgical procedure in the vagus nerve region includes a cannula, an endoscopic dissection tool and a cradle assembly slideably disposed in a cannula lumen. The cradle assembly includes a C-ring, an electrode cuff disposed over an exterior surface of the C-ring, and a deployment device. The electrode cuff is adapted to wrap around the target nerve region or nerve branch to be stimulated when deployed from the C-ring using the deployment device. A method of performing a minimally invasive surgical procedure is also described.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 26, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Randy W. Westlund, David J. Smith, Mark J. Bly, Anthony V. Caparso
  • Publication number: 20100191310
    Abstract: An injectable electronics device has a housing sized to fit within an injection tool lumen with one or more electrical components position within the housing, and a self-expanding loop antenna coupled to at least one electrical component within the housing. The self-expanding loop antenna is expandable from a first compressed shape to a second expanded shape.
    Type: Application
    Filed: July 27, 2009
    Publication date: July 29, 2010
    Applicant: Corventis, Inc.
    Inventor: Mark J. Bly
  • Patent number: 7747334
    Abstract: A lead for sensing and pacing a left ventricle of the heart includes a lead body having a proximal portion and a distal portion, a lumen extending through the lead body, a conductor extending through the lead body from the proximal end to the distal end and an electrode disposed on the distal portion of the lead body and electrically coupled to the conductor. A distal tip of the lead body is continuously deflectable upon advancement and withdrawal of a stylet through the lumen at the distal portion to access a selected branch of the coronary sinus. The distal tip of the lead body may be offset before or after continuously deflecting the distal tip.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: June 29, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Mark J. Bly, Brian D. Soltis, Bruce A. Tockman, Avram Scheiner
  • Publication number: 20090292194
    Abstract: An adherent device may be placed on a patient's chest for monitoring heart rate variability for chiropractic care. The device may comprise an adherent patch configured to adhere to the patient continuously for an extended period, for example an extended period of one week, and the HRV can be determined for the extended period. Two or more electrodes may be used to measure a cardiac signal and determine the HRV. The device may comprise accelerometers to measure at least one of posture, flexion/extension or lateral movement of the patient. The device may be placed on the patient and used in the clinic, and the patient may be sent home from the clinic with the adherent device. The device may wirelessly transmit heart rate data to an external device, such as a handheld monitor, that the chiropractor may consult during treatment.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 26, 2009
    Applicant: Corventis, Inc.
    Inventors: Imad Libbus, Yatheendhar D. Manicka, Mark J. Bly
  • Publication number: 20090076342
    Abstract: A system and methods are provided for physiological monitoring and prediction. The system includes a detecting system and a remote monitoring system. The detecting system includes, (i) an adherent device with a plurality of sensors that provide an indication of at least one physiological event of a patient, the adherent device being coupled to the patient's thorax and (ii) a wireless communication device coupled to the plurality of sensors and configured to transfer patient data directly or indirectly from the plurality of sensors to a remote monitoring system. The remote monitoring system is coupled to the wireless communication device. Logic resources may be provided at the remote monitoring system to determine the physiological event of the patient.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Badri Amurthur, Mark J. Bly, Kristofer J. James, Imad Libbus, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090076343
    Abstract: A heart failure patient management system includes a detecting system. The detecting system includes an adherent device configured to be coupled to a patient. The adherent device includes a plurality of sensors to monitor physiological parameters of the patient to determine heart failure status. At least one ID may be coupled to the adherent device that is addressable and unique to each adherent device. A wireless communication device is coupled to the plurality of sensors and configured to transfer patient data directly or indirectly from the plurality of sensors to a remote monitoring system. The remote monitoring system is coupled to the wireless communication device.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Kristofer J. James, Mark J. Bly, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090076397
    Abstract: An adherent device comprises an adhesive patch to adhere to a skin of the patient. At least two electrodes are connected to the patch and capable of electrically coupling to the patient. Electrocardiogram circuitry can be coupled to at the least two electrodes to measure an electrocardiogram signal of the patient. An accelerometer can be mechanically coupled to the adhesive patch to generate an accelerometer signal in response to at least one of an activity or a position of the patient. A processor comprising a tangible medium can be configured to communicate with the electrocardiogram circuitry and the accelerometer to generate an alarm signal in response to the electrocardiogram signal and the accelerometer signal.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Mark J. Bly, Kristofer J. James, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090076346
    Abstract: A heart failure patient management system includes a detecting system. The detecting system includes an adherent device configured to be coupled to a patient. The adherent device includes a plurality of sensors to monitor physiological parameters of the patient to determine heart failure status. At least one ID may be coupled to the adherent device that is addressable and unique to each adherent device. A wireless communication device is coupled to the plurality of sensors and configured to transfer patient data directly or indirectly from the plurality of sensors to a remote monitoring system. The remote monitoring system is coupled to the wireless communication device.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Kristofer J. James, Badri Amurthur, Mark J. Bly, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090076336
    Abstract: Methods and devices for monitoring and/or treating patients comprise a switch to automatically start-up the device when the device contacts tissue. By automatically starting up the device, the device may be installed without the clinician and/or user turning on the device, such that the device can be easy to use. In many embodiments, the device comprises startup circuitry with very low current and/or power consumption, for example less than 100 pA. The startup circuitry can detect tissue contact and turn on circuitry that is used to monitor or treat the patient.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Scott T. Mazar, Mark J. Bly
  • Publication number: 20090076363
    Abstract: An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Mark J. Bly, Badri Amurthur, Kristofer J. James, Imad Libbus, Yatheendhar D. Manicka, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090076344
    Abstract: Systems and methods of detecting an impending cardiac decompensation of a patient measure at least two of an electrocardiogram signal of the patient, a hydration signal of the patient, a respiration signal of the patient or an activity signal of the patient. The at least two of the electrocardiogram signal, the hydration signal, the respiration signal or the activity signal are combined with an algorithm to detect the impending cardiac decompensation.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Imad Libbus, Mark J. Bly, Kristofer J. James, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090076405
    Abstract: A respiratory monitoring system is provided. A measuring system is provided that includes, (i) an adherent device configured to be coupled to a patient, the adherent device including a plurality of sensors that monitor respiratory status, at least one of the sensors configured to monitor the patient's respiration, and (ii) a wireless communication device coupled to the plurality of sensors and configured to transfer patient data directly or indirectly from the plurality of sensors to a remote monitoring system. A remote monitoring system is coupled to the wireless communication device.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Badri Amurthur, Mark J. Bly, Imad Libbus, Yatheendhar D. Manicka
  • Publication number: 20090076364
    Abstract: An adherent device is configured to adhere to the skin of the patient with an adherent patch, for example breathable tape, coupled to at least four electrodes. The device comprises impedance circuitry coupled to the at least four electrodes and configured to measure respiration of the patient to detect sleep apnea and/or hypopnea. The impedance circuitry may be used to measure hydration of the patient. An accelerometer can be mechanically coupled to the adherent patch such that the accelerometer can be coupled to and move with the skin of the patient. Electrocardiogram circuitry to generate an electrocardiogram signal may be coupled to at least two of the at least four electrodes to detect the sleep apnea and/or hypopnea.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Imad Libbus, Yatheendhar D. Manicka, Mark J. Bly
  • Publication number: 20090076341
    Abstract: A system is provided for tracking an individual, engaged in extreme physical activity, physiological status and detecting and predicting negative physiological events. A monitoring system is provided that includes a plurality of sensors. Each sensor has a sensor output, and a combination of the sensor outputs is used to determine distress of the monitored individual engaged in extreme physical activity. A wireless communication device is coupled to the plurality of sensors and transfers data directly or indirectly from the plurality of sensors to a remote monitoring system. A remote monitoring system is coupled to the wireless communication device and configured to receive the processed data.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Kristofer J. James, Badri Amurthur, Mark J. Bly, Imad Libbus
  • Publication number: 20090076345
    Abstract: An adherent device to monitor a patient comprises an adhesive patch to adhere to a skin of the patient. At least four electrodes are connected to the patch and capable of electrically coupling to the patient. Impedance circuitry is coupled to the at least four electrodes to measure a hydration signal of the patient. Electrocardiogram circuitry is coupled to at least two of the at least four electrodes to measure an electrocardiogram signal of the patient. An accelerometer can be mechanically coupled to the adhesive patch to generate a signal in response to at least one of an activity or a position of the patient.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: Corventis, Inc.
    Inventors: Yatheendhar D. Manicka, Badri Amurthur, Mark J. Bly, Kristofer J. James, Imad Libbus, Scott T. Mazar, Jerry S. Wang
  • Publication number: 20090018498
    Abstract: Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.
    Type: Application
    Filed: October 24, 2007
    Publication date: January 15, 2009
    Inventors: Jessica G. Chiu, Gregory Waimong Chan, Gabriel Asongwe, Robert C. Esselstein, Douglas Gesswein, Srinivasan Sridharan, Nianjiong Joan Bei, William E. Webler, Stephen G. Schaible, Mina Chow, Yan Shen, Hongzhi Bai, Mark J. Bly, Thomas R. Hatten
  • Publication number: 20090005733
    Abstract: Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.
    Type: Application
    Filed: October 24, 2007
    Publication date: January 1, 2009
    Inventors: Jessica G. Chiu, Gregory Waimong Chan, Gabriel Asongwe, Robert C. Esselstein, Douglas Gesswein, Srinivasan Sridharan, Nianjiong Joan Bei, William E. Webler, Stephen G. Schaible, Mina Chow, Yan Shen, Hongzhi Bai, Mark J. Bly, Thomas R. Hatten
  • Publication number: 20080228194
    Abstract: An apparatus for performing a minimally-invasive surgical procedure in the vagus nerve region includes a cannula, an endoscopic dissection tool and a cradle assembly slideably disposed in a cannula lumen. The cradle assembly includes a C-ring, an electrode cuff disposed over an exterior surface of the C-ring, and a deployment device. The electrode cuff is adapted to wrap around the target nerve region or nerve branch to be stimulated when deployed from the C-ring using the deployment device. A method of performing a minimally invasive surgical procedure is also described.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 18, 2008
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Randy W. Westlund, David J. Smith, Mark J. Bly, Anthony V. Caparso
  • Publication number: 20080183254
    Abstract: A medical electrical lead for transvascularly stimulating a nerve, muscle or other tissue from an adjacent vessel is described. The lead includes a bifurcated distal portion including a first elongate member forming a first spiral and a second elongate member forming a second spiral. The spirals can be in parallel or serial alignment with one another.
    Type: Application
    Filed: January 30, 2007
    Publication date: July 31, 2008
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Mark J. Bly, Anthony V. Caparso, Randy W. Westlund, Ronald W. Heil, Brendan Koop