Patents by Inventor Mark J. Burk

Mark J. Burk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932845
    Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate, 1,4-butanediol, or other product pathway and being capable of producing 4-hydroxybutyrate, 1,4-butanediol, or other product, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate, 1,4-butanediol, or other product or related products using the microbial organisms.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: March 19, 2024
    Assignee: Genomatica, Inc.
    Inventors: Priti Pharkya, Anthony P. Burgard, Stephen J. Van Dien, Robin E. Osterhout, Mark J. Burk, John D. Trawick, Michael P. Kuchinskas, Brian Steer
  • Patent number: 11932893
    Abstract: The invention provides non-naturally occurring microbial organisms containing an alkene pathway having at least one exogenous nucleic acid encoding an alkene pathway enzyme expressed in a sufficient amount to convert an alcohol to an alkene. The invention additionally provides methods of using such microbial organisms to produce an alkene, by culturing a non-naturally occurring microbial organism containing an alkene pathway as described herein under conditions and for a sufficient period of time to produce an alkene.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 19, 2024
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Robin E. Osterhout
  • Patent number: 11834690
    Abstract: The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: December 5, 2023
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya
  • Patent number: 11814664
    Abstract: Provided herein are non-naturally occurring microbial organisms having a pathway for production of (3R)-hydroxybutyl (3R)-hydroxybutyrate, wherein the organism can further include a (R)-1,3-butanediol pathway, a (3R)-hydroxybutyrate pathway, a (3R)-hydroxybutyryl-CoA pathway, an acetoacetate pathway, an acetoacetyl-CoA pathway, a (3R)-hydroxybutyl-ACP pathway, or an acetoacetyl-ACP pathway. Additionally provided are methods and processes for producing and isolating (3R)-hydroxybutyl (3R)-hydroxybutyrate using the microbial organisms, and various compositions having the (3R)-hydroxybutyl (3R)-hydroxybutyrate. Still further provided are methods of treating or preventing a disease, disorder or condition using the (3R)-hydroxybutyl (3R)-hydroxybutyrate produced by the microbial organisms of the invention.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: November 14, 2023
    Assignee: Genomatica, Inc.
    Inventors: Benjamin Adelstein, Robin E. Osterhout, Mark J. Burk
  • Publication number: 20230287464
    Abstract: The invention provides non-naturally occurring microbial organisms containing butadiene or 2,4-pentadienoate pathways comprising at least one exogenous nucleic acid encoding a butadiene or 2,4-pentadienoate pathway enzyme expressed in a sufficient amount to produce butadiene or 2,4-pentadienoate. The organism can further contain a hydrogen synthesis pathway. The invention additionally provides methods of using such microbial organisms to produce butadiene or 2,4-pentadienoate by culturing a non-naturally occurring microbial organism containing butadiene or 2,4-pentadienoate pathways as described herein under conditions and for a sufficient period of time to produce butadiene or 2,4-pentadienoate. Hydrogen can be produced together with the production of butadiene or 2,4-pentadienoate.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 14, 2023
    Inventors: Priti Pharkya, Anthony P. Burgard, Mark J. Burk
  • Patent number: 11708589
    Abstract: Provided herein is a non-naturally occurring microbial organism having a 1,3-butanediol (1,3-BDO) pathway and comprising at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme expressed in a sufficient amount to produce 1,3-BDO. In some embodiments, the pathway includes reducing equivalents from CO or hydrogen. In certain embodiments, a 1,3-BDO pathway proceeds by way of central metabolites pyruvate, succinate or alpha-ketoglutarate. Also provided herein is a method for producing 1,3-BDO, includes culturing such microbial organisms under conditions and for a sufficient period of time to produce 1,3-BDO.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: July 25, 2023
    Assignee: Genomatica Inc.
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Jun Sun, Priti Pharkya
  • Patent number: 11708592
    Abstract: The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: July 25, 2023
    Assignee: GENOMATICA, INC.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Mark J. Burk
  • Patent number: 11702682
    Abstract: Provided is a method of producing and isolating a diamine produced by microbial fermentation that minimizes undesirable salt formation to provide a lower cost process.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: July 18, 2023
    Assignee: Genomatica, Inc.
    Inventors: Lauri H. Suominen, Connor J. Galleher, Michael Japs, Mark J. Burk, Cara Tracewell
  • Publication number: 20230134936
    Abstract: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ?-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB).
    Type: Application
    Filed: May 19, 2022
    Publication date: May 4, 2023
    Inventors: Mark J. Burk, Stephen J. Van Dien, Anthony P. Burgard, Wei Niu
  • Publication number: 20230116689
    Abstract: Provided herein are lasso peptides libraries, and particularly phage display libraries of lasso peptides. Also provided herein are related methods and systems for producing the libraries and for screening the libraries to identify candidate lasso peptides having desirable properties.
    Type: Application
    Filed: March 18, 2021
    Publication date: April 13, 2023
    Inventors: Mark J. Burk, I-Hsiung Brandon Chen
  • Publication number: 20230094365
    Abstract: This invention relates to compounds and compositions useful as inhibitors of PIM kinases. Also provided are methods of synthesis and methods of use of PIM inhibitors in treating individuals suffering from cancerous malignancies.
    Type: Application
    Filed: April 29, 2022
    Publication date: March 30, 2023
    Inventors: Mark J. Burk, Brandon Chen, Jingyi Li, Shawn Bachan
  • Publication number: 20230076411
    Abstract: Provided herein are endothelin receptor antagonistic lasso peptides and related compositions and methods for the management, prevention and/or treatment of an endothelin B receptor (ETBR)-mediated proliferative disease, such as cancer. Biosynthetic methods for producing the lasso peptides are also provided. In some embodiments, the method comprises administering to the subject a therapeutic effective amount of a lasso peptide, wherein the lasso peptide comprises an amino acid sequence selected from SEQ ID NOS:1-17 and 42-56. In particular embodiments, the lasso peptide is GI-D9 cyclized.
    Type: Application
    Filed: January 5, 2021
    Publication date: March 9, 2023
    Inventor: Mark J. Burk
  • Publication number: 20230065295
    Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate or related products using the microbial organisms.
    Type: Application
    Filed: July 7, 2021
    Publication date: March 2, 2023
    Inventors: Priti Pharkya, Anthony P. Burgard, Stephen J. Van Dien, Robin E. Osterhout, Mark J. Burk, John D. Trawick, Michael P. Kuchinskas, Brian Steer
  • Publication number: 20230022727
    Abstract: The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
    Type: Application
    Filed: November 16, 2021
    Publication date: January 26, 2023
    Inventors: Mark J. Burk, Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya
  • Patent number: 11525149
    Abstract: A non-naturally occurring eukaryotic or prokaryotic organism includes one or more gene disruptions occurring in genes encoding enzymes imparting increased fumarate, malate or acrylate production in the organism when the gene disruption reduces an activity of the enzyme. The one or more gene disruptions confers increased production of acrylate onto the organism. Organisms that produce acrylate have an acrylate pathway that at least one exogenous nucleic acid encoding an acrylate pathway enzyme expressed in a sufficient amount to produce acrylate, the acrylate pathway comprising a decarboxylase. Methods of producing fumarate, malate or acrylate include culturing these organisms.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: December 13, 2022
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Priti Pharkya
  • Publication number: 20220290192
    Abstract: A non-naturally occurring microbial organism includes a microbial organism having a 1,3-butanediol (1,3-BDO) pathway having at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme expressed in a sufficient amount to produce 1,3-BDO.
    Type: Application
    Filed: October 21, 2021
    Publication date: September 15, 2022
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
  • Publication number: 20220274997
    Abstract: This disclosure relates to compounds and compositions useful as inhibitors of PIM kinases. Also provided are methods of synthesis and methods of use of PIM inhibitors in treating individuals suffering from cancerous malignancies.
    Type: Application
    Filed: April 29, 2020
    Publication date: September 1, 2022
    Inventors: Mark J. Burk, Brandon Chen
  • Patent number: 11401534
    Abstract: The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 2, 2022
    Assignee: Genomatica, Inc.
    Inventors: Stephen J. Van Dien, Anthony P. Burgard, Robert Haselbeck, Catherine J. Pujol-Baxley, Wei Niu, John D. Trawick, Harry Yim, Mark J. Burk, Robin E. Osterhout, Jun Sun
  • Patent number: 11371063
    Abstract: The invention provides non-naturally occurring microbial organisms containing butadiene or 2,4-pentadienoate pathways comprising at least one exogenous nucleic acid encoding a butadiene or 2,4-pentadienoate pathway enzyme expressed in a sufficient amount to produce butadiene or 2,4-pentadienoate. The organism can further contain a hydrogen synthesis pathway. The invention additionally provides methods of using such microbial organisms to produce butadiene or 2,4-pentadienoate by culturing a non-naturally occurring microbial organism containing butadiene or 2,4-pentadienoate pathways as described herein under conditions and for a sufficient period of time to produce butadiene or 2,4-pentadienoate. Hydrogen can be produced together with the production of butadiene or 2,4-pentadienoate.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 28, 2022
    Assignee: Genomatica, Inc.
    Inventors: Priti Pharkya, Anthony P. Burgard, Mark J. Burk
  • Patent number: 11371046
    Abstract: The invention provides a non-naturally occurring microbial biocatalyst including a microbial organism having a 4-hydroxybutanoic acid (4-HB) biosynthetic pathway having at least one exogenous nucleic acid encoding 4-hydroxybutanoate dehydrogenase, succinyl-CoA synthetase, CoA-dependent succinic semialdehyde dehydrogenase, or ?-ketoglutarate decarboxylase, wherein the exogenous nucleic acid is expressed in sufficient amounts to produce monomeric 4-hydroxybutanoic acid (4-HB).
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: June 28, 2022
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Stephen J. Van Dien, Anthony P. Burgard, Wei Niu