Patents by Inventor Mark J. Dalberth

Mark J. Dalberth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9783888
    Abstract: An ALD coating method to provide a coating surface on a substrate is provided. The ALD coating method comprises: providing a deposition heading including a unit cell having a first precursor nozzle assembly and a second precursor nozzle assembly; emitting a first precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; emitting a second precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; removing moving the substrate under the deposition head such that the first precursor is directed onto a first area of the coating surface prior to the second precursor being directed onto the first area of the coating surface.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: October 10, 2017
    Assignee: Ultratech, Inc.
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Patent number: 9567670
    Abstract: An ALD coating method to provide a coating surface on a substrate is provided. The ALD coating method comprises: providing a deposition heading including a unit cell having a first precursor nozzle assembly and a second precursor nozzle assembly; emitting a first precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; emitting a second precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; removing moving the substrate under the deposition head such that the first precursor is directed onto a first area of the coating surface prior to the second precursor being directed onto the first area of the coating surface.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: February 14, 2017
    Assignee: Ultratech, Inc.
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Publication number: 20160115596
    Abstract: An ALD coating method to provide a coating surface on a substrate is provided. The ALD coating method comprises: providing a deposition heading including a unit cell having a first precursor nozzle assembly and a second precursor nozzle assembly; emitting a first precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; emitting a second precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; removing moving the substrate under the deposition head such that the first precursor is directed onto a first area of the coating surface prior to the second precursor being directed onto the first area of the coating surface.
    Type: Application
    Filed: December 2, 2015
    Publication date: April 28, 2016
    Applicant: Ultratech, Inc.
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Publication number: 20150275363
    Abstract: An ALD coating method to provide a coating surface on a substrate is provided. The ALD coating method comprises: providing a deposition heading including a unit cell having a first precursor nozzle assembly and a second precursor nozzle assembly; emitting a first precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; emitting a second precursor from the first precursor nozzle assembly into chamber under atmospheric conditions in a direction substantially normal to the coating surface; removing moving the substrate under the deposition head such that the first precursor is directed onto a first area of the coating surface prior to the second precursor being directed onto the first area of the coating surface.
    Type: Application
    Filed: December 29, 2014
    Publication date: October 1, 2015
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Publication number: 20120141676
    Abstract: An ALD coating system (100) includes a fixed gas manifold (710, 1300) disposed over a moving substrate with a coating surface of the substrate facing precursor orifice plate (930). A gas control system (1400) delivers gas or vapor precursors and inert gas into the fixed gas manifold which directs input gases onto a coating surface of the moving substrate. The gas control system includes a blower (1485) interfaced with the gas manifold which draws gas through the gas manifold to remove unused precursors, inert gas and reaction byproduct from the coating surface. The gas manifold is configured segregate precursor gases at the coating surface to prevent the mixing of dissimilar precursors. The gas manifold may also segregate unused precursor gases in the exhaust system so that the unused precursors can be recovered and reused.
    Type: Application
    Filed: October 14, 2011
    Publication date: June 7, 2012
    Applicant: Cambridge NanoTech Inc
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Publication number: 20110311726
    Abstract: An improved precursor vaporization device and method for vaporizing liquid and solid precursors having a low vapor pressure at a desired precursor temperature includes elements and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber. An improved ALD system and method for growing thin films having more thickness and thickness uniformity at lower precursor temperatures includes devices and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber and for releasing a plurality of first precursor pulses into a reaction chamber to react with substrates before releasing a different second precursor pulse into the reaction chamber to react with the substrates.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicant: Cambridge NanoTech Inc.
    Inventors: Guo Liu, Adam Bertuch, Eric W. Deguns, Mark J. Dalberth, Ganesh M. Sundaram, Jill Svenja Becker
  • Patent number: 6679946
    Abstract: A method and apparatus for determining substrate temperature and the mirror center of a film structure formed on the substrate utilizes a transmission intensity spectrum of light to determine mirror center and a normalized transmission intensity spectrum of light to determine substrate temperature. White light is transmitted through the substrate and the film structure during the film structure formation process. Also during the film formation process, a reflected light intensity spectrum is obtained using the same or another light source, for light reflected by the film structure. Substrate temperature and mirror center may be determined during formation of the film structure and, based on the measured temperature and mirror center, the mirror center may be adjusted by changing film formation conditions during the film formation process to vary the thickness of the films being formed.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: January 20, 2004
    Assignee: Optical Communication Products, Inc.
    Inventors: Andrew William Jackson, Mark J. Dalberth