Patents by Inventor Mark J Schnitzer

Mark J Schnitzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200100659
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Patent number: 10499797
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: December 10, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Patent number: 10292592
    Abstract: A system and method for monitoring biological parameters in freely moving animals that, in the illustrative embodiment, comprises a two-color optical measurement/recording system that is combined with a fluorescent protein reporter of cellular membrane potentials and a fluorescent protein that is insensitive to such cellular membrane potentials. The two wavelengths are used to un-mix physiological artifacts in recordings that occur in freely moving animals.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 21, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jesse D. Marshall, Mark J. Schnitzer
  • Publication number: 20190133449
    Abstract: Analysis of live beings is facilitated. According to an example embodiment of the present invention, a light-directing arrangement such as an endoscope is mounted to a live being. Optics in the light-directing arrangement are implemented to pass source light (e.g., laser excitation light) into the live being, and to pass light from the live being for detection thereof. The light from the live being may include, for example, photons emitted in response to the laser excitation light (i.e., fluoresced). The detected light is then used to detect a characteristic of the live being.
    Type: Application
    Filed: September 24, 2018
    Publication date: May 9, 2019
    Inventors: Benjamin A. Flusberg, Eric David Cocker, Juergen Claus Jung, Mark J. Schnitzer
  • Publication number: 20170296060
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: February 27, 2017
    Publication date: October 19, 2017
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9629554
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: April 25, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9498135
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 22, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9474448
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 25, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160135754
    Abstract: A system and method for monitoring biological parameters in freely moving animals that, in the illustrative embodiment, comprises a two-color optical measurement/recording system that is combined with a fluorescent protein reporter of cellular membrane potentials and a fluorescent protein that is insensitive to such cellular membrane potentials. The two wavelengths are used to un-mix physiological artifacts in recordings that occur in freely moving animals.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 19, 2016
    Inventors: Jesse D. Marshall, Mark J. Schnitzer
  • Publication number: 20160033752
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160029893
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160004063
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9195043
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: November 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20150141846
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Patent number: 8897858
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 25, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Publication number: 20130260382
    Abstract: Systems and methods are provided for imaging a sample. A portable slide reader may be provided that may be configured to accept a slide and that may contain one or more miniature microscopes therein. The slide reader may include a display showing images captured by the microscopes. The slide may be movable relative to the microscopes and the position of the captured image may be controllable. In some instances, images captured may be useful for DNA sequencing. Multiple color ranges may be captured for a target region, corresponding to different nucleobases.
    Type: Application
    Filed: February 14, 2013
    Publication date: October 3, 2013
    Inventors: Kunal Ghosh, Eric Cocker, Mark J. Schnitzer
  • Publication number: 20120143065
    Abstract: Biological tissue such as skeletal and cardiac muscle can be imaged by using an objective-based probe in the tissue and scanning at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without needing to stain or otherwise introduce a foreign element used to generate or otherwise increase the sensed light. The probe can include a light generator for generating light pulses that are directed towards structures located within the thick tissue. The system can additionally include aspects that lessen adverse image-quality degradation. Further, the system can additionally be constructed as a hand-held device.
    Type: Application
    Filed: November 28, 2011
    Publication date: June 7, 2012
    Inventors: Gabriel Nestor Sanchez, Scott L. Delp, Mark J. Schnitzer, Michael E. Llewellyn
  • Publication number: 20120062723
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 15, 2012
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 8068899
    Abstract: Biological thick tissue such as skeletal and cardiac muscle is imaged by inserting a probe into the tissue and scanning the tissue at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without staining or otherwise introducing a foreign element used to generate or otherwise increase the sensed light. The probe includes a light generator for generating light pulses that are directed towards structures located within the thick tissue. The light pulses interact with intrinsic characteristics of the structures to generate a signal such as SHG or intrinsic fluorescence. Reliance on intrinsic characteristics of the structures is particularly useful for applications in which the introduction of foreign substances to the thick tissue is undesirable.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: November 29, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael E. Llewellyn, Robert J. Barretto, Scott L. Delp, Mark J. Schnitzer
  • Publication number: 20090012406
    Abstract: Biological thick tissue such as skeletal and cardiac muscle is imaged by inserting a probe into the tissue and scanning the tissue at a sufficiently fast rate to mitigate motion artifacts due to physiological motion. According to one example embodiment, such a probe is part of a system that is capable of reverse-direction high-resolution imaging without staining or otherwise introducing a foreign element used to generate or otherwise increase the sensed light. The probe includes a light generator for generating light pulses that are directed towards structures located within the thick tissue. The light pulses interact with intrinsic characteristics of the structures to generate a signal such as SHG or intrinsic fluorescence. Reliance on intrinsic characteristics of the structures is particularly useful for applications in which the introduction of foreign substances to the thick tissue is undesirable.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 8, 2009
    Inventors: Michael E. Llewellyn, Robert J. Barretto, Scott L. Delp, Mark J. Schnitzer