Patents by Inventor Mark J. Selby

Mark J. Selby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12227575
    Abstract: Provided are methods and compositions for treating cancer using an effective amount of a PD-1 antagonist (e.g., an antibody) in combination with a TIM-4 antagonist (e.g., an antibody).
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: February 18, 2025
    Assignee: Bristol-Myers Squibb Company
    Inventors: Sean E. Doyle, Mark J. Selby, Eric Chadwick
  • Patent number: 12129297
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to T-cell immunoglobulin and mucin-domain containing-3 (TIM3) protein. Also provided are uses of these antibodies, or antigen binding portions thereof, in therapeutic applications, such as treatment of cancer. Further provided are cells that produce the antibodies, or antigen binding portions thereof, polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen binding portions thereof, and vectors comprising the polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen binding portions thereof.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 29, 2024
    Assignee: Bristol-Myers Squibb Company
    Inventors: Xiao Min Schebye, Mark J. Selby, Michelle Minhua Han, Christine Bee, Andy X. Deng, Anan Chuntharapai, Brigitte Devaux, Huiming Li, Paul O. Sheppard, Alan J. Korman, Daniel F. Ardourel, Ekaterina Deyanova, Richard Yu-Cheng Huang, Guodong Chen, Michelle Kuhne, Hong-An Truong
  • Patent number: 12110337
    Abstract: This disclosure provides isolated antibodies that bind specifically to CD27 with high affinity. The disclosure provides methods for treating a subject afflicted with a cancer comprising administering to the subject a therapeutically effective amount of an anti-CD27 antibody as monotherapy or in combination with a checkpoint inhibitor, such as an anti-PD-1, anti-PD-L1, or anti-CTLA-4 antibody.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: October 8, 2024
    Assignee: Bristol-Myers Squibb Company
    Inventors: Li-Sheng Lu, Mark J. Selby, Alan J. Korman, Shrikant Deshpande, Mohan Srinivasan, Jun Zhang, Haichun Huang, Guodong Chen, Richard Y. Huang, Ekaterina Deyanova
  • Patent number: 11802162
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: October 31, 2023
    Assignee: Bristol-Myers Squibb Company
    Inventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
  • Publication number: 20230174647
    Abstract: The present application relates to antibodies specifically binding to immunoglobulin-like transcript 4 (ILT4), which is also known as LILRB2, LIR2, MIR10, and CD85d, and corresponding nucleic acids, host cells, compositions, and uses. In some embodiments, the antibodies bind specifically to human ILT4, but do not significantly bind to ILT2, ILT3, or ILT5, or to other members of the LILRA or LILRB families.
    Type: Application
    Filed: June 21, 2022
    Publication date: June 8, 2023
    Applicants: Five Prime Therapeutics, Inc., Bristol-Myers Squibb Company
    Inventors: Xiao Min Schebye, Diana Yuhui Chen, Andrew Rankin, Xiaodi Deng, Joseph Toth, Linda Liang, Michelle Minhua Han, Christine Bee, Hong-An Truong, Mark J. Selby, Nils Lonberg, Guodong Chen, Richard Y. Huang, Ekaterina G. Deyanova, Alan J. Korman
  • Publication number: 20230119066
    Abstract: This disclosure provides isolated antibodies, for example, monoclonal antibodies, that specifically bind to the C-C Motif Chemokine Receptor 8 (CCR8) expressed on the surface of a cell and mediate depletion of the CCR8-expressing cell by anti-body-dependent cellular cytotoxicity (ADCC). The disclosure provides methods for treating a subject afflicted with a cancer comprising administering to the subject a therapeutically effective amount of an anti-CCR8 antibody as monotherapy or in combination with an anti-cancer agent such as an immune checkpoint inhibitor, for example, an anti-PD-1 or anti-PD-L1 antibody.
    Type: Application
    Filed: March 22, 2021
    Publication date: April 20, 2023
    Inventors: Ruth Yin-Zong Lan, Olufemi A. Adelakun, Ishita Barman, Joseph Campbell, SJ Jian Zhe Diong, Felix Findeisen, Danielle M. Greenawalt, Renu Jain, Amy D. Jhatakia, John K. Lee, Peter S.K. Lee, Linda Liang, Kai Lu, Bryan McDonald, Paul Mesko, Arvind Rajpal, Sharmila Sambanthamoorthy, Mark J. Selby, Nathan O. Siemers, Pavel Strop, Gaby A. Terracina, Xi-Tao Wang
  • Patent number: 11591392
    Abstract: Provided herein are antibodies, or antigen-binding portions thereof, that bind to T-cell immunoglobulin and mucin-domain containing-3 (TIM3) protein. Also provided are uses of these antibodies, or antigen-binding portions thereof, in therapeutic applications, such as treatment of cancer. Further provided are cells that produce the antibodies, or antigen-binding portions thereof, polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof, and vectors comprising the polynucleotides encoding the heavy and/or light chain regions of the antibodies, or antigen-binding portions thereof.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 28, 2023
    Assignee: Bristol-Myers Squibb Company
    Inventors: Xiao Min Schebye, Mark J. Selby, Michelle Minhua Han, Christine Bee, Andy X. Deng, Anan Chuntharapai, Brigitte Devaux, Huiming Li, Paul O. Sheppard, Alan J. Korman, Daniel F. Ardourel, Ekaterina Deyanova, Richard Huang, Guodong Chen, Michelle Kuhne, Hong-An Truong
  • Patent number: 11530267
    Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to WIC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: December 20, 2022
    Assignee: E.R. Squibb & Sons, L.L.C.
    Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
  • Patent number: 11529399
    Abstract: The present invention provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies) that bind to human Inducible T Cell COStimulator (ICOS) and exhibit therapeutically desirable functional properties, e.g., the ability to stimulate human ICOS activity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells, and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the antibodies of the invention are also provided. The antibodies of the invention can be used, for example, as an agonist to stimulate or enhance an immune response in a subject, e.g., antigen-specific T cell responses against a tumor or viral antigen. The antibodies of the invention can also be used in combination with other antibodies (e.g., PD-1, PD-L1, and/or CTLA-4 antibodies) to treat, for example, cancer.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: December 20, 2022
    Assignee: Bristol-Myers Squibb Company
    Inventors: John J. Engelhardt, Mark J. Selby, Alan J. Korman, Mary Diane Feingersh, Brenda L. Stevens
  • Patent number: 11512130
    Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to MHC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: November 29, 2022
    Assignee: E.R. Squibb & Sons, L.L.C.
    Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
  • Patent number: 11408889
    Abstract: Provided herein are diagnostic antibodies that bind to glucocorticoid-induced tumor necrosis factor receptor (GITR). Such antibodies are useful for methods of detecting the expression of GITR in biological samples, for example, tumor tissue, and identifying a cancer patient likely to respond to anti-GITR immunotherapy or predicting whether a cancer patient will respond to anti-GITR immunotherapy.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: August 9, 2022
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Xi-Tao Wang, Olufemi A. Adelakun, Anne C. Lewin, Alan J. Korman, Mark J. Selby, Changyu Wang, Haichun Huang, Karla A. Henning, Nils Lonberg, Mohan Srinivasan, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Susan Chien-Szu Wong, Huiming Li
  • Patent number: 11401328
    Abstract: The present application relates to antibodies specifically binding to immunoglobulin-like transcript 4 (ILT4), which is also known as LILRB2, LIR2, MIR10, and CD85d, and corresponding nucleic acids, host cells, compositions, and uses. In some embodiments, the antibodies bind specifically to human ILT4, but do not significantly bind to ILT2, ILT3, or ILT5, or to other members of the LILRA or LILRB families.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 2, 2022
    Assignees: Five Prime Therapeutics, Inc., Bristol-Myers Squibb Company
    Inventors: Xiao Min Schebye, Diana Yuhui Chen, Andrew Rankin, Xiaodi Deng, Joseph Toth, Linda Liang, Michelle Minhua Han, Christine Bee, Hong-An Truong, Mark J. Selby, Nils Lonberg, Guodong Chen, Richard Y. Huang, Ekaterina G. Deyanova, Alan J. Korman
  • Patent number: 11306143
    Abstract: Provided are methods and compositions for treating cancer using an effective amount of a PD-1 antagonist (e.g., an antibody) in combination with a TIM-4 antagonist (e.g., an antibody).
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: April 19, 2022
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Sean E. Doyle, Mark J. Selby, Eric Chadwick
  • Patent number: 11274152
    Abstract: Provided are methods for clinical treatment of tumors (e.g., advanced solid tumors) using an anti-LAG-3 antibody in combination with an anti-PD-1 antibody.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 15, 2022
    Assignee: Bristol-Myers Squibb Company
    Inventors: Alan J. Korman, Nils Lonberg, David J. Fontana, Andres A. Gutierrez, Mark J. Selby, Katherine Lewis
  • Patent number: 11236163
    Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to MHC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 1, 2022
    Assignee: E.R. Squibb & Sons, L.L.C.
    Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
  • Patent number: 11236164
    Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to WIC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 1, 2022
    Assignee: E.R. Squibb & Sons, L.L.C.
    Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
  • Patent number: 11236165
    Abstract: The present disclosure provides isolated monoclonal antibodies that specifically bind to LAG-3 with high affinity, particularly human monoclonal antibodies. Preferably, the antibodies bind human LAG-3. In certain embodiments, the antibodies bind both human and monkey LAG-3 but do not bind mouse LAG-3. The invention provides anti-LAG-3 antibodies that can inhibit the binding of LAG-3 to WIC Class II molecules and that can stimulate antigen-specific T cell responses. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. This disclosure also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 1, 2022
    Assignee: E.R. Squibb & Sons, L.L.C.
    Inventors: Kent B. Thudium, Mark J. Selby, Kyra D. Zens, Mark Yamanaka, Alan J. Korman, Heidi N. Leblanc
  • Patent number: 11213586
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: January 4, 2022
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Guodong Chen, Richard Y. Huang, Indrani Chakraborty, Haichun Huang, Susan Chien-Szu Wong, Huiming Li, Bryan C. Barnhart, Aaron P. Yamniuk, Ming Lei, Liang Schweizer, Sandra V. Hatcher, Arvind Rajpal
  • Patent number: 11207391
    Abstract: The present invention provides isolated monoclonal antibodies (e.g., humanized and human monoclonal antibodies) that bind to human Inducible T Cell COStimulator (ICOS) and exhibit therapeutically desirable functional properties, e.g., the ability to stimulate human ICOS activity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells, and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules, and pharmaceutical compositions comprising the antibodies of the invention are also provided. The antibodies of the invention can be used, for example, as an agonist to stimulate or enhance an immune response in a subject, e.g., antigen-specific T cell responses against a tumor or viral antigen. The antibodies of the invention can also be used in combination with other antibodies (e.g., PD-1, PD-L1, and/or CTLA-4 antibodies) to treat, for example, cancer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 28, 2021
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: John J. Engelhardt, Mark J. Selby, Alan J. Korman, Mary Diane Feingersh, Brenda L. Stevens
  • Patent number: 11084881
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: August 10, 2021
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li