Patents by Inventor Mark James Bell

Mark James Bell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7904268
    Abstract: A method for validating a flow calibration factor of a flow meter is provided according to an embodiment of the invention. The method for validating a flow calibration factor of a flow meter includes determining an initial flexural stiffness of a component of the flow meter. The method for validating a flow calibration factor of a flow meter includes determining a current flexural stiffness of the component. The method for validating a flow calibration factor of a flow meter further includes comparing the initial flexural stiffness to the current flexural stiffness. The method for validating a flow calibration factor of a flow meter further includes detecting a calibration error condition responsive to comparing the initial flexural stiffness to the current flexural stiffness.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: March 8, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Glen Wheeler, David F. Normen, Mark James Bell, Matthew T. Crisfield
  • Patent number: 7865318
    Abstract: Meter electronics (20) for a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a vibrational response from the flow meter (5) and a processing system (203) in communication with the interface (201). The vibrational response is a response to a vibration of the flow meter (5) at a substantially resonant frequency. The processing system (203) is configured to receive the vibrational response from the interface (201), determine a frequency (?0) of the vibrational response, determine a response voltage (V) and a drive current (I) of the vibrational response, measure a decay characteristic (?) of the flow meter (5), and determine the stiffness parameter (K) from the frequency (?0), the response voltage (V), the drive current (I), and the decay characteristic (?).
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: January 4, 2011
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Joseph Rensing, Andrew Timothy Patten, Timothy J. Cunningham, Mark James Bell
  • Patent number: 7845242
    Abstract: A three pickoff sensor flow meter (200) is provided according to the invention. The three pickoff sensor flow meter (200) includes a first flow conduit (210a) conducting a first flow stream, a second flow conduit (210b) that is independent of the first flow stream, and a common driver (216) configured to vibrate the first flow conduit (210a) and the second flow conduit (210b). The three pickoff sensor flow meter (200) further includes three pickoff sensors (218, 219a, 219b) configured to provide first and second time delay values (?t1) and (?t2) for the first flow conduit (210a) and the second flow conduit (210b).
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: December 7, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Craig B McAnally, Mark James Bell, Gregory Treat Lanham
  • Patent number: 7802484
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a multi-phase flow material at a flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes one or more flow conduits (301), at least two pickoff sensors (308), and a driver (309). The compact vibratory flowmeter (200) further includes a maximum water drive frequency in the one or more flow conduits (301) that is less than about 250 Hertz (Hz) and an aspect ratio (L/H) of the one or more flow conduits (301) that is greater than about 2.5. A height-to-bore ratio (H/B) of the one or more flow conduits (301) is less than about 10 and a bowed flow conduit geometry includes end bend angles ? of between about 120 degrees and about 170 degrees.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: September 28, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Patent number: 7805261
    Abstract: Meter electronics (20) for determining a mass fraction of flow components in a flow material flowing is provided according to an embodiment of the invention. The meter electronics (20) include an interface (201) for receiving a frequency response of the flow material and a processing system (203). The processing system (203) receives the frequency response from the interface (201) and breaks out the frequency response into at least a gas frequency component and a fluid frequency component. The processing system (203) determines an overall density from the frequency response and determines a gas density from the gas frequency component. The processing system (203) determines the void fraction of gas from the frequency response and one or more of the gas frequency component and the fluid frequency component. The processing system (203) determines the mass fraction from the void fraction of gas multiplied by a ratio of the gas density divided by the overall density.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: September 28, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Craig B. McAnally
  • Publication number: 20100198531
    Abstract: A vibratory flow meter (5) for measuring flow characteristics of a three phase flow is provided according to the invention. The vibratory flow meter (5) includes a meter assembly (10) including pickoff sensors (105, 105?) and meter electronics (20) coupled to the pickoff sensors (105, 105?). The meter electronics (20) is configured to receive a vibrational response from the pickoff sensors (105, 105), generate a first density measurement of the three phase flow using a first frequency component of the vibrational response, and generate at least a second density measurement of the three phase flow using at least a second frequency component of the vibrational response. The at least second frequency component is a different frequency than the first frequency component. The meter electronics (20) is further configured to determine one or more flow characteristics from the first density measurement and the at least second density measurement.
    Type: Application
    Filed: July 30, 2007
    Publication date: August 5, 2010
    Applicant: Micro Motion, Inc
    Inventors: Mark James Bell, Craig B. McAnally, Richard L. St. Pierre, JR., Andrew Timothy Patten
  • Publication number: 20100175456
    Abstract: A multiple flow conduit flow meter (200) is provided according to an embodiment of the invention. The multiple flow conduit flow meter (200) includes a first flow conduit (201) conducting a first flow stream and a pair of first pickoff sensors (215, 215) affixed to the first flow conduit (201). The multiple flow conduit flow meter (200) further includes at least one additional flow conduit (202) conducting at least one additional flow stream and at least one pair of additional pickoff sensors (216, 216?) affixed to the at least one additional flow conduit (202). The at least one additional flow stream is independent of the first flow stream. The multiple flow conduit flow meter (200) further includes a common driver (220) configured to vibrate both the first flow conduit (201) and the at least one additional flow conduit (202) in order to generate a first vibrational response and at least one additional vibrational response.
    Type: Application
    Filed: August 24, 2006
    Publication date: July 15, 2010
    Applicant: Micro Motion, Inc.
    Inventors: Charles Paul Stack, Andrew Timothy Patten, Gregory Treat Lanham, Mark James Bell
  • Publication number: 20100154563
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a cement flow material at a cement flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes at least two pickoff sensors (308) and a driver (309). The compact vibratory flowmeter (200) further includes one or more flow conduits (301). The at least two pickoff sensors (308) are affixed to the one or more flow conduits (301) and the driver (309) is configured to vibrate the one or more flow conduits (301). The one or more flow conduits (301) include a drive frequency that is less than about 200 Hertz (Hz) and a frequency ratio of the drive frequency to a fluid resonant frequency of the cement flow material that is less than about 0.8.
    Type: Application
    Filed: April 6, 2005
    Publication date: June 24, 2010
    Applicant: MICRO MOTION, INC.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Patent number: 7716963
    Abstract: A method and apparatus is disclosed that determines the time delay (202) between the actual flow and the measured flow in a flow meter. The time delay is used to shift the flow measured by the flow meter to correspond to the actual flow measured by a prover or calibration system. In this way an accurate comparison is made between the flow measured by the flow meter and the flow provided by the prover.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: May 18, 2010
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Brian T. Smith
  • Publication number: 20100083769
    Abstract: A compact vibratory flowmeter (200) for measuring flow characteristics of a multi-phase flow material at a flow material pressure of greater than about 10 pounds-per-square-inch (psi) is provided according to an embodiment of the invention. The compact vibratory flowmeter (200) includes one or more flow conduits (301), at least two pickoff sensors (308), and a driver (309). The compact vibratory flowmeter (200) further includes a maximum water drive frequency in the one or more flow conduits (301) that is less than about 250 Hertz (Hz) and an aspect ratio (L/H) of the one or more flow conduits (301) that is greater than about 2.5. A height-to-bore ratio (H/B) of the one or more flow conduits (301) is less than about 10 and a bowed flow conduit geometry includes end bend angles ? of between about 120 degrees and about 170 degrees.
    Type: Application
    Filed: April 6, 2005
    Publication date: April 8, 2010
    Applicant: MICRO MOTION, INC.
    Inventors: Anthony William Pankratz, Mark James Bell, Andrew Timothy Patten
  • Publication number: 20090272173
    Abstract: A three pickoff sensor flow meter (200) is provided according to the invention. The three pickoff sensor flow meter (200) includes a first flow conduit (210a) conducting a first flow stream, a second flow conduit (210b) that is independent of the first flow stream, and a common driver (216) configured to vibrate the first flow conduit (210a) and the second flow conduit (210b). The three pickoff sensor flow meter (200) further includes three pickoff sensors (218, 219a, 219b) configured to provide first and second time delay values (?t1) and (?t2) for the first flow conduit (210a) and the second flow conduit (210b).
    Type: Application
    Filed: July 28, 2006
    Publication date: November 5, 2009
    Applicant: Micro Motion, Inc.
    Inventors: Craig B McAnally, Mark James Bell, Gregory Treat Lanham
  • Patent number: 7597007
    Abstract: A Coriolis flow meter includes at least one flow conduit (103), including a first conduit node (603a) and a second conduit node (603b) and a bending axis W that intersects the flow conduit (103) at the first conduit node (603a) and at the second conduit node (603b). The flow conduit (103) vibrates around the bending axis W. The meter further includes a drive system (104) and a balance system (600) coupled to the flow conduit (103). The balance system (600) includes two or more Y-balance weights (601a, 601b) and two or more attachment members (602a, 602b) that couple the two or more Y-balance weights (601a, 601b) to the flow conduit (103). At least a first Y-balance weight (601a) is coupled to the flow conduit (103) at a first location between the first conduit node (603a) and the drive system (104) and at least a second Y-balance weight (601b) is coupled to the flow conduit (103) at a second location between the drive system (104) and the second conduit node (603b).
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: October 6, 2009
    Assignee: Micro Motion, Inc.
    Inventors: Craig Brainerd Van Cleve, Mark James Bell
  • Publication number: 20090013753
    Abstract: A method and apparatus is disclosed that determines the time delay (202) between the actual flow and the measured flow in a flow meter. The time delay is used to shift the flow measured by the flow meter to correspond to the actual flow measured by a prover or calibration system. In this way an accurate comparison is made between the flow measured by the flow meter and the flow provided by the prover.
    Type: Application
    Filed: August 24, 2004
    Publication date: January 15, 2009
    Applicant: MICRO MOTION, INC
    Inventors: Mark James Bell, Brian T. Smith
  • Publication number: 20080281535
    Abstract: Meter electronics (20) for a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a vibrational response from the flow meter (5) and a processing system (203) in communication with the interface (201). The vibrational response is a response to a vibration of the flow meter (5) at a substantially resonant frequency. The processing system (203) is configured to receive the vibrational response from the interface (201), determine a frequency (?0) of the vibrational response, determine a response voltage (V) and a drive current (I) of the vibrational response, measure a decay characteristic (?) of the flow meter (5), and determine the stiffness parameter (K) from the frequency (?0), the response voltage (V), the drive current (I), and the decay characteristic (?).
    Type: Application
    Filed: September 19, 2005
    Publication date: November 13, 2008
    Inventors: Matthew Joseph Rensing, Andrew Timothy Patten, Timothy J. Cunningham, Mark James Bell
  • Publication number: 20080243400
    Abstract: Meter electronics (20) for processing sensor signals for a multi-phase flow material in a flowmeter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving first and second sensor signals (210 and 211) for the multi-phase flow material and a processing system (203).
    Type: Application
    Filed: August 15, 2006
    Publication date: October 2, 2008
    Applicant: MICRO MOTION, INC.
    Inventors: Mark James Bell, Craig B. McAnally
  • Patent number: 7421350
    Abstract: A meter electronics and method for detecting a residual material in a flow meter assembly are provided according to the invention. The meter electronics includes a processing system adapted to direct the flow meter to vibrate the flow meter assembly and receive a vibrational response from the flow meter assembly. The meter electronics further includes a storage system configured to store flow meter parameters and data. The meter electronics is further characterized by the processing system being configured to compare the vibrational response to a predetermined residual material threshold to detect the residual material.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: September 2, 2008
    Assignee: Micro Motinn, Inc.
    Inventors: Graeme Ralph Duffill, Andrew Timothy Patten, Mark James Bell
  • Publication number: 20080189079
    Abstract: Meter electronics (20) for determining a void fraction of gas in a flow material flowing through a flow meter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving a frequency response of the flow material and a processing system (203) in communication with the interface (201). The processing system (203) is configured to receive the frequency response from the interface (201), break out the frequency response into at least a gas frequency component and a fluid frequency component, and determine the void fraction of gas from the frequency response and one or more of the gas frequency component and the fluid frequency component.
    Type: Application
    Filed: May 19, 2006
    Publication date: August 7, 2008
    Applicant: MICRO MOTION, INC.
    Inventors: Craig B. McAnally, Mark James Bell
  • Publication number: 20080189067
    Abstract: Meter electronics (20) and methods for detecting a flow anomaly in a flow material flowing through a flow meter (5) are provided. The meter electronics (20) includes an interface (201) for receiving a vibrational response of the flow material, with the vibrational response including at least a first sensor signal and a second sensor signal, and a processing system (203) in communication with the interface (201). The processing system (203) is configured to receive the vibrational response from the interface (201), generate a ninety degree phase shift from the first sensor signal and generate at least one flow characteristic using at least the first sensor signal and the ninety degree phase shift, compare the at least one flow characteristic to at least one anomaly profile, detect a shift in the vibrational response if the at least one flow characteristic falls within the anomaly profile, and indicate an anomaly condition as a result of the detecting.
    Type: Application
    Filed: December 7, 2006
    Publication date: August 7, 2008
    Applicant: MICRO MOTION, INC.
    Inventors: Graeme Ralph Duffill, Mark James Bell, Craig B. McAnally, Richard L. Maginnis
  • Publication number: 20080184814
    Abstract: Meter electronics (20) for processing sensor signals in a flow meter and for computing mass flow rate, density or volume flow rate includes an interface (201) for receiving a first sensor signal and a second sensor signal and a processing system (203) in communication with the interface (201) and configured to generate a ninety degree phase shift from the first sensor signal with a Hilbert transform and compute a phase difference from the ninety degree phase shift, the first sensor signal and the second sensor signal. A frequency is computed from the first sensor signal and the ninety degree phase shift. A second ninety degree phase shift can be generated from the second sensor signal.
    Type: Application
    Filed: December 5, 2005
    Publication date: August 7, 2008
    Applicant: Micro Motion, Inc.
    Inventors: Mark James Bell, Richard L. Maginnis, Craig B. McAnally
  • Publication number: 20080184815
    Abstract: Meter electronics (20) for determining a mass fraction of flow components in a flow material flowing is provided according to an embodiment of the invention. The meter electronics (20) include an interface (201) for receiving a frequency response of the flow material and a processing system (203). The processing system (203) receives the frequency response from the interface (201) and breaks out the frequency response into at least a gas frequency component and a fluid frequency component. The processing system (203) determines an overall density from the frequency response and determines a gas density from the gas frequency component. The processing system (203) determines the void fraction of gas from the frequency response and one or more of the gas frequency component and the fluid frequency component. The processing system (203) determines the mass fraction from the void fraction of gas multiplied by a ratio of the gas density divided by the overall density.
    Type: Application
    Filed: May 19, 2006
    Publication date: August 7, 2008
    Applicant: MICRO MOTION, INC.
    Inventors: Mark James Bell, Craig B. McAnally