Patents by Inventor Mark James Cook

Mark James Cook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230389856
    Abstract: Methods and systems implement a variety of sensors, including in embodiments various combinations of EEG sensors, biochemical sensors, photoplethysmography (PPG) sensors, microphones, and accelerometers, to detect, predict, and/or classify various physiological events and/or conditions related to epilepsy, sleep apnea, and/or vestibular disorders. The events can include neuroelectrical events, cardiac events, and/or pulmonary events, among others. In some cases, the method and systems implement trained artificial intelligence (AI) models to detect, classify, and/or predict. The methods and systems are also capable of optimizing a treatment window, suggesting treatments that may improve the overall well-being of the patient (including improving pre- or post-event symptoms and effects), and/or interacting with various care providers.
    Type: Application
    Filed: November 16, 2021
    Publication date: December 7, 2023
    Inventors: John Michael Heasman, Mark James Cook, Robert John Klupacs, Rohan J. Hoare
  • Publication number: 20230238100
    Abstract: Methods and systems implement a variety of sensors, including in embodiments various combinations of EEG sensors, biochemical sensors, photoplethysmography (PPG) sensors, microphones, and accelerometers, to detect, predict, and/or classify various physiological events and/or conditions related to epilepsy, sleep apnea, and/or vestibular disorders. The events can include neuroelectrical events, cardiac events, and/or pulmonary events, among others. In some cases, the method and systems implement trained artificial intelligence (AI) models to detect, classify, and/or predict. The methods and systems are also capable of optimizing a treatment window, suggesting treatments that may improve the overall well-being of the patient (including improving pre- or post-event symptoms and effects), and/or interacting with various care providers.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 27, 2023
    Inventors: John Michael Heasman, Mark James Cook, Robert John Klupacs, Rohan Hoare
  • Publication number: 20200187861
    Abstract: An electrode device is disclosed comprising: an elongate, implantable body comprising elastomeric material, a plurality of electrodes positioned along a length of the implantable body; an electrical connection comprising one or more conductive elements extending through the elastomeric material and electrically connecting to the electrodes; and a reinforcement device extending through the elastomeric material. The length of the implantable body is extendible by placing the implantable body under tension. The reinforcement device limits the degree by which the length of the implantable body can extend under tension. At least one of the electrodes can extend circumferentially around a portion of the implantable body. A delivery device and method of delivery for an electrode device is also disclosed.
    Type: Application
    Filed: February 21, 2020
    Publication date: June 18, 2020
    Inventors: Christopher Edward Williams, Mark James Cook, Owen Burns, Chua Vanessa Maxim, Alan Lai
  • Patent number: 10568574
    Abstract: An electrode device is disclosed comprising: an elongate, implantable body comprising elastomeric material, a plurality of electrodes positioned along a length of the implantable body; an electrical connection comprising one or more conductive elements extending through the elastomeric material and electrically connecting to the electrodes; and a reinforcement device extending through the elastomeric material. The length of the implantable body is extendible by placing the implantable body under tension. The reinforcement device limits the degree by which the length of the implantable body can extend under tension. At least one of the electrodes can extend circumferentially around a portion of the implantable body. A delivery device and method of delivery for an electrode device is also disclosed.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: February 25, 2020
    Assignee: THE BIONICS INSTITUTE OF AUSTRALIA
    Inventors: Christopher Edward Williams, Mark James Cook, Owen Burns, Chua Vanessa Maxim, Alan Lai
  • Publication number: 20190008403
    Abstract: An electrode device is disclosed comprising: an elongate, implantable body comprising elastomeric material, a plurality of electrodes positioned along a length of the implantable body; an electrical connection comprising one or more conductive elements extending through the elastomeric material and electrically connecting to the electrodes; and a reinforcement device extending through the elastomeric material. The length of the implantable body is extendible by placing the implantable body under tension. The reinforcement device limits the degree by which the length of the implantable body can extend under tension. At least one of the electrodes can extend circumferentially around a portion of the implantable body. A delivery device and method of delivery for an electrode device is also disclosed.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 10, 2019
    Inventors: Christopher Edward Williams, Mark James Cook, Owen Burns, Chua Vanessa Maxim, Alan Lai
  • Publication number: 20120095524
    Abstract: The present invention provides a method for counteracting seizure events in a mammalian brain, the method comprising applying an electrical stimulus to the brain, the electrical stimulus being pulsatile and comprising pulses forming a pulse train. In order to effectively “desynchronize” the neural activity patterns in the brain, the pulse train can be at a frequency greater than substantially 300 Hz and at a duty cycle greater than substantially 20%, the pulse train can have an inconstant inter pulse interval such that the pulse rate is not constant throughout the pulse train, and the pulses can have a pulse width greater than substantially 300 ?sec. Apparatus for carrying out the method is also described.
    Type: Application
    Filed: June 29, 2010
    Publication date: April 19, 2012
    Applicant: The Bionics Institute of Australia
    Inventors: Timothy Scott Nelson, Mark James Cook, Anthony Neville Burkitt